Suppr超能文献

基于惯性测量单元的功能近红外光谱学中汉密尔顿-维纳运动伪影校正:一种新方法。

Hammerstein-Wiener Motion Artifact Correction for Functional Near-Infrared Spectroscopy: A Novel Inertial Measurement Unit-Based Technique.

机构信息

Applied Neurocognitive Psychology Lab, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany.

Department of Biomedical Engineering, University of Technology-Iraq, Baghdad 10066, Iraq.

出版信息

Sensors (Basel). 2024 May 16;24(10):3173. doi: 10.3390/s24103173.

Abstract

Participant movement is a major source of artifacts in functional near-infrared spectroscopy (fNIRS) experiments. Mitigating the impact of motion artifacts (MAs) is crucial to estimate brain activity robustly. Here, we suggest and evaluate a novel application of the nonlinear Hammerstein-Wiener model to estimate and mitigate MAs in fNIRS signals from direct-movement recordings through IMU sensors mounted on the participant's head (head-IMU) and the fNIRS probe (probe-IMU). To this end, we analyzed the hemodynamic responses of single-channel oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) signals from 17 participants who performed a hand tapping task with different levels of concurrent head movement. Additionally, the tapping task was performed without head movements to estimate the ground-truth brain activation. We compared the performance of our novel approach with the probe-IMU and head-IMU to eight established methods (PCA, tPCA, spline, spline Savitzky-Golay, wavelet, CBSI, RLOESS, and WCBSI) on four quality metrics: SNR, △AUC, RMSE, and R. Our proposed nonlinear Hammerstein-Wiener method achieved the best SNR increase ( < 0.001) among all methods. Visual inspection revealed that our approach mitigated MA contaminations that other techniques could not remove effectively. MA correction quality was comparable with head- and probe-IMUs.

摘要

参与者的运动是功能近红外光谱(fNIRS)实验中伪影的主要来源。减轻运动伪影(MAs)的影响对于稳健地估计大脑活动至关重要。在这里,我们建议并评估了一种新的非线性Hammerstein-Wiener 模型的应用,该模型通过安装在参与者头部的惯性测量单元(head-IMU)和 fNIRS 探头(probe-IMU)上的传感器来估计和减轻直接运动记录中 fNIRS 信号中的 MA。为此,我们分析了 17 名参与者在执行手敲击任务时的单通道氧合血红蛋白(HbO)和脱氧血红蛋白(HbR)信号的血液动力学反应,同时进行了不同程度的头部运动。此外,还进行了没有头部运动的敲击任务,以估计真实的大脑激活。我们将我们的新方法与 probe-IMU 和 head-IMU 与八种已建立的方法(PCA、tPCA、样条、样条 Savitzky-Golay、小波、CBSI、RLOESS 和 WCBSI)进行了比较,使用了四个质量指标:信噪比(SNR)、△AUC、均方根误差(RMSE)和 R。我们提出的非线性 Hammerstein-Wiener 方法在所有方法中实现了最佳 SNR 增加(<0.001)。目视检查显示,我们的方法减轻了其他技术无法有效去除的 MA 污染。MA 校正质量与 head-IMU 和 probe-IMU 相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1452/11125330/9cf15c874765/sensors-24-03173-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验