College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, PR China; College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
Biosens Bioelectron. 2024 Sep 1;259:116409. doi: 10.1016/j.bios.2024.116409. Epub 2024 May 19.
DNA-based molecular amplifiers offer significant promise for molecular-level disease diagnosis and treatment, yet tailoring their activation for precise timing and localization remains a challenge. Herein, we've pioneered a dual activation strategy harnessing external light and internal ATP to create a highly controlled DNA logic amplifier (FDLA) for accurate miRNA monitoring in cancer cells. The FDLA was constructed by tethered the two functionalized catalytic hairpin assembly (CHA) hairpin modules (ATP aptamer sealed hairpin aH1 and photocleavable (PC-linker) sites modified hairpin pH2) to DNA tetrahedron (DTN). The FDLA system incorporates ATP aptamers and PC-linkers as logic control units, allowing them to respond to both exogenous UV light and endogenous ATP present within cancer cells. This response triggers the release of CHA hairpin modules, enabling amplified FRET miRNA imaging through an AND-AND gate. The DTN structure could improve the stability of FDLA and accelerate the kinetics of the strand displacement reaction. It is noteworthy that the UV and ATP co-gated DNA circuit can control the DNA bio-computing at specific time and location, offering spatial and temporal capabilities that can be harnessed for miRNA imaging. Furthermore, the miRNA-sensing FDLA amplifier demonstrates reliable imaging of intracellular miRNA with minimal background noise and false-positive signals. This highlights the feasibility of utilizing both exogenous and endogenous regulatory strategies to achieve spatial and temporal control of DNA molecular circuits within living cancer cells. Such advancements hold immense potential for unraveling the correlation between miRNA and associated diseases.
基于 DNA 的分子扩增器为分子水平的疾病诊断和治疗提供了巨大的潜力,但精确调整其激活时间和位置仍然是一个挑战。在此,我们开创了一种双重激活策略,利用外部光和内部 ATP 来创建一种高度可控的 DNA 逻辑放大器(FDLA),用于在癌细胞中准确监测 miRNA。FDLA 是通过将两个功能化的催化发夹组装(CHA)发夹模块(ATP 适体封闭发夹 aH1 和光裂解(PC-接头)位点修饰的发夹 pH2)连接到 DNA 四面体(DTN)上构建的。FDLA 系统将 ATP 适体和 PC-接头作为逻辑控制单元,使其能够对外源 UV 光和癌细胞内存在的内源性 ATP 做出响应。这种响应触发 CHA 发夹模块的释放,通过 AND-AND 门实现放大的 FRET miRNA 成像。DTN 结构可以提高 FDLA 的稳定性并加速链置换反应的动力学。值得注意的是,UV 和 ATP 共同门控的 DNA 电路可以在特定时间和位置控制 DNA 生物计算,提供可以用于 miRNA 成像的时空能力。此外,miRNA 感应 FDLA 放大器可以可靠地对细胞内 miRNA 进行成像,背景噪声和假阳性信号最小。这突出了利用外源和内源调节策略来实现活癌细胞内 DNA 分子电路的时空控制的可行性。这些进展为揭示 miRNA 与相关疾病之间的相关性提供了巨大的潜力。