Simulation & Data Lab Neuroscience, Institute for Advanced Simulations IAS-5, Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, JARA, 52428 Jülich, Germany.
Computational Biomedicine, Institute of Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, JARA, 52428 Jülich, Germany.
Curr Opin Struct Biol. 2024 Aug;87:102817. doi: 10.1016/j.sbi.2024.102817. Epub 2024 May 24.
New high-performance computing architectures are becoming operative, in addition to exascale computers. Quantum computers (QC) solve optimization problems with unprecedented efficiency and speed, while neuromorphic hardware (NMH) simulates neural network dynamics. Albeit, at the moment, both find no practical use in all atom biomolecular simulations, QC might be exploited in the not-too-far future to simulate systems for which electronic degrees of freedom play a key and intricate role for biological function, whereas NMH might accelerate molecular dynamics simulations with low energy consumption. Machine learning and artificial intelligence algorithms running on NMH and QC could assist in the analysis of data and speed up research. If these implementations are successful, modular supercomputing could further dramatically enhance the overall computing capacity by combining highly optimized software tools into workflows, linking these architectures to exascale computers.
新型高性能计算架构正在投入使用,除了 exascale 计算机。量子计算机 (QC) 以空前的效率和速度解决优化问题,而神经形态硬件 (NMH) 则模拟神经网络动力学。尽管目前,两者在所有原子生物分子模拟中都没有实际用途,但在不久的将来,QC 可能会被用于模拟电子自由度在生物功能中起关键和复杂作用的系统,而 NMH 可能会以低能耗加速分子动力学模拟。在 NMH 和 QC 上运行的机器学习和人工智能算法可以帮助分析数据并加快研究速度。如果这些实现取得成功,模块化超级计算可以通过将高度优化的软件工具组合到工作流程中,将这些架构连接到 exascale 计算机,进一步显著提高整体计算能力。