Krickov Ivan V, Lim Artem G, Shirokova Liudmila S, Korets Mikhail А, Pokrovsky Oleg S
BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk 634050, Russia.
Geosciences and Environment Toulouse, UMR 5563 CNRS, Univeristy of Toulouse, 14 Avenue Edouard Belin, 31400 Toulouse, France; N. Laverov Federal Center for Integrated Arctic Research, Russian Academy of Sciences, Arkhangelsk 163000, Russia.
Sci Total Environ. 2024 Aug 1;936:173491. doi: 10.1016/j.scitotenv.2024.173491. Epub 2024 May 23.
In order to foresee the impact of permafrost thaw on CO emissions by high-latitude rivers, in-situ measurements across a permafrost and climate/vegetation gradient, coupled with assessment of possible physico-chemical and landscape controlling factors are necessary. Here we chose 34 catchments of variable stream order (1 to 9) and watershed size (1 to >10 km) located across a permafrost and biome gradient in the Western Siberian Lowland (WSL), from the permafrost-free southern taiga to the continuous permafrost zone of tundra. Across the south-north transect, maximal CO emissions (2.2 ± 1.1 g C-CO m d) occurred from rivers of the discontinuous/sporadic permafrost zone, i.e., geographical permafrost thawing boundary. In this transitional zone, fluvial C emission to downstream export ratio was as high as 8.0, which greatly (x 10) exceeded the ratio in the permafrost free and continuous permafrost zones. Such a high evasion at the permafrost thawing front can stem from an optimal combination of multiple environmental factors: maximal active layer thickness, sizable C stock in soils, and mobilization of labile organic nutrients from dispersed peat ice that enhanced DOC and POC processing in the water column, likely due to priming effect. Via a substituting space for time approach, we foresee an increase in CO and CH fluvial evasion in the continuous and discontinuous permafrost zone, which is notably linked to the greening of tundra increases in biomass of the riparian vegetation, river water warming and thermokarst lake formation on the watershed.
为了预测多年冻土融化对高纬度河流碳排放的影响,有必要在多年冻土和气候/植被梯度上进行实地测量,并评估可能的物理化学和景观控制因素。在这里,我们选择了位于西西伯利亚低地(WSL)多年冻土和生物群落梯度上的34个不同河流等级(1至9级)和流域面积(1至>10平方千米)的集水区,范围从无多年冻土的南部泰加林到苔原的连续多年冻土区。在南北样带上,最大碳排放(2.2±1.1克碳-CO 米-1天-1)发生在不连续/零星多年冻土区的河流,即地理上的多年冻土融化边界。在这个过渡带,河流碳排放与向下游输出的比率高达8.0,大大(×10)超过了无多年冻土区和连续多年冻土区的比率。在多年冻土融化前沿如此高的逸出量可能源于多种环境因素(活动层厚度最大、土壤中碳储量可观以及来自分散泥炭冰的不稳定有机养分的动员增强了水柱中溶解性有机碳和颗粒有机碳的处理,这可能是由于激发效应)的最佳组合。通过用空间替代时间的方法,我们预测连续和不连续多年冻土区河流中二氧化碳和甲烷的逸出量将会增加,这明显与苔原的绿化、河岸植被生物量的增加、河水变暖以及流域内热喀斯特湖的形成有关。