Suppr超能文献

一种可穿戴传感器和机器学习技术可估计老年人及神经疾病患者的步长。

A wearable sensor and machine learning estimate step length in older adults and patients with neurological disorders.

作者信息

Zadka Assaf, Rabin Neta, Gazit Eran, Mirelman Anat, Nieuwboer Alice, Rochester Lynn, Del Din Silvia, Pelosin Elisa, Avanzino Laura, Bloem Bastiaan R, Della Croce Ugo, Cereatti Andrea, Hausdorff Jeffrey M

机构信息

Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.

Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.

出版信息

NPJ Digit Med. 2024 May 25;7(1):142. doi: 10.1038/s41746-024-01136-2.

Abstract

Step length is an important diagnostic and prognostic measure of health and disease. Wearable devices can estimate step length continuously (e.g., in clinic or real-world settings), however, the accuracy of current estimation methods is not yet optimal. We developed machine-learning models to estimate step length based on data derived from a single lower-back inertial measurement unit worn by 472 young and older adults with different neurological conditions, including Parkinson's disease and healthy controls. Studying more than 80,000 steps, the best model showed high accuracy for a single step (root mean square error, RMSE = 6.08 cm, ICC(2,1) = 0.89) and higher accuracy when averaged over ten consecutive steps (RMSE = 4.79 cm, ICC(2,1) = 0.93), successfully reaching the predefined goal of an RMSE below 5 cm (often considered the minimal-clinically-important-difference). Combining machine-learning with a single, wearable sensor generates accurate step length measures, even in patients with neurologic disease. Additional research may be needed to further reduce the errors in certain conditions.

摘要

步长是健康和疾病的一项重要诊断及预后指标。可穿戴设备能够持续估算步长(例如在诊所或现实环境中),然而,当前估算方法的准确性尚未达到最佳状态。我们基于472名患有不同神经系统疾病(包括帕金森病)的年轻人和老年人以及健康对照者佩戴的单个下背部惯性测量单元所获取的数据,开发了用于估算步长的机器学习模型。在研究超过80000步的过程中,最佳模型对单步显示出较高的准确性(均方根误差,RMSE = 6.08厘米,组内相关系数ICC(2,1)=0.89),并且在连续十步平均时准确性更高(RMSE = 4.79厘米,ICC(2,1)=0.93),成功达到了RMSE低于5厘米的预定义目标(通常被认为是最小临床重要差异)。即使在患有神经系统疾病的患者中,将机器学习与单个可穿戴传感器相结合也能生成准确的步长测量值。可能需要进一步的研究来在某些情况下进一步减少误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df2f/11127966/12f840c1967d/41746_2024_1136_Fig1_HTML.jpg

相似文献

2
Evaluating the use of machine learning in the assessment of joint angle using a single inertial sensor.
J Rehabil Assist Technol Eng. 2019 Aug 19;6:2055668319868544. doi: 10.1177/2055668319868544. eCollection 2019 Jan-Dec.
4
Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running.
Hum Mov Sci. 2020 Dec;74:102690. doi: 10.1016/j.humov.2020.102690. Epub 2020 Oct 22.
5
Walking-speed estimation using a single inertial measurement unit for the older adults.
PLoS One. 2019 Dec 26;14(12):e0227075. doi: 10.1371/journal.pone.0227075. eCollection 2019.
6
Gait Stride Length Estimation Using Embedded Machine Learning.
Sensors (Basel). 2023 Aug 14;23(16):7166. doi: 10.3390/s23167166.
7
Real-World Gait Detection Using a Wrist-Worn Inertial Sensor: Validation Study.
JMIR Form Res. 2024 May 1;8:e50035. doi: 10.2196/50035.
10
Identification of motor progression in Parkinson's disease using wearable sensors and machine learning.
NPJ Parkinsons Dis. 2023 Oct 7;9(1):142. doi: 10.1038/s41531-023-00581-2.

引用本文的文献

4
Digital biomechanical assessment of gait in patients with peripheral neuropathies.
J Neuroeng Rehabil. 2025 Jul 13;22(1):159. doi: 10.1186/s12984-025-01694-w.
5
Utility of synthetic musculoskeletal gaits for generalizable healthcare applications.
Nat Commun. 2025 Jul 4;16(1):6188. doi: 10.1038/s41467-025-61292-1.
8
Continuous Assessment of Daily-Living Gait Using Self-Supervised Learning of Wrist-Worn Accelerometer Data.
medRxiv. 2025 May 21:2025.05.21.25328061. doi: 10.1101/2025.05.21.25328061.
9
Using machine learning to identify Parkinson's disease severity subtypes with multimodal data.
J Neuroeng Rehabil. 2025 Jun 2;22(1):126. doi: 10.1186/s12984-025-01648-2.
10
Comparison of clinical measures of motor function with a Holter monitor in Parkinson's disease.
Clin Park Relat Disord. 2025 Apr 17;12:100325. doi: 10.1016/j.prdoa.2025.100325. eCollection 2025.

本文引用的文献

2
Minimal clinically important differences of spatiotemporal gait variables in Parkinson disease.
Gait Posture. 2024 Feb;108:257-263. doi: 10.1016/j.gaitpost.2023.11.016. Epub 2023 Nov 25.
3
Impact of deep brain stimulation on gait in Parkinson disease: A kinematic study.
Gait Posture. 2024 Feb;108:151-156. doi: 10.1016/j.gaitpost.2023.12.002. Epub 2023 Dec 7.
4
Digital endpoints in clinical trials of Alzheimer's disease and other neurodegenerative diseases: challenges and opportunities.
Front Neurol. 2023 Jun 15;14:1210974. doi: 10.3389/fneur.2023.1210974. eCollection 2023.
5
Cognitive impairment is associated with gait variability and fall risk in amyotrophic lateral sclerosis.
Eur J Neurol. 2023 Oct;30(10):3056-3067. doi: 10.1111/ene.15936. Epub 2023 Jun 29.
7
Acceptability of wearable devices for measuring mobility remotely: Observations from the Mobilise-D technical validation study.
Digit Health. 2023 Feb 1;9:20552076221150745. doi: 10.1177/20552076221150745. eCollection 2023 Jan-Dec.
8
An Apple a Day to Keep the Parkinson's Disease Doctor Away?
Ann Neurol. 2023 Apr;93(4):681-685. doi: 10.1002/ana.26612. Epub 2023 Feb 9.
9
Gait variability predicts cognitive impairment in older adults with subclinical cerebral small vessel disease.
Front Aging Neurosci. 2022 Nov 18;14:1052451. doi: 10.3389/fnagi.2022.1052451. eCollection 2022.
10
On the use of wearable sensors as mobility biomarkers in the marketing authorization of new drugs: A regulatory perspective.
Front Med (Lausanne). 2022 Sep 21;9:996903. doi: 10.3389/fmed.2022.996903. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验