Xiong Yu-An, Duan Sheng-Shun, Hu Hui-Hui, Yao Jie, Pan Qiang, Sha Tai-Ting, Wei Xiao, Ji Hao-Ran, Wu Jun, You Yu-Meng
Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, People's Republic of China.
Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
Nat Commun. 2024 May 25;15(1):4470. doi: 10.1038/s41467-024-48948-0.
Molecular ferroelectrics are attracting great interest due to their light weight, mechanical flexibility, low cost, ease of processing and environmental friendliness. These advantages make molecular ferroelectrics viable alternatives or supplements to inorganic ceramics and polymer ferroelectrics. It is expected that molecular ferroelectrics with good performance can be fabricated, which in turns calls for effective chemical design strategies in crystal engineering. To achieve so, we propose a hydrogen bond modification method by introducing the hydroxyl group, and successfully boost the phase transition temperature (T) by at least 336 K. As a result, the molecular ferroelectric 1-hydroxy-3-adamantanammonium tetrafluoroborate [(HaaOH)BF] can maintain ferroelectricity until 528 K, a T value much larger than that of BTO (390 K). Meanwhile, micro-domain patterns, in stable state for 2 years, can be directly written on the film of (HaaOH)BF. In this respect, hydrogen bond modification is a feasible and effective strategy for designing molecular ferroelectrics with high T and stable ferroelectric domains. Such an organic molecule with varied modification sites and the precise crystal engineering can provide an efficient route to enrich high-T ferroelectrics with various physical properties.
分子铁电体因其重量轻、机械柔韧性好、成本低、易于加工和环境友好等特点而备受关注。这些优点使分子铁电体成为无机陶瓷和聚合物铁电体的可行替代品或补充品。预计可以制造出具有良好性能的分子铁电体,这反过来又需要晶体工程中的有效化学设计策略。为了实现这一目标,我们提出了一种通过引入羟基的氢键修饰方法,并成功地将相变温度(T)提高了至少336 K。结果,分子铁电体1-羟基-3-金刚烷基铵四氟硼酸盐[(HaaOH)BF]可以在528 K之前保持铁电性,该T值远大于BTO的T值(390 K)。同时,可以直接在(HaaOH)BF薄膜上写入稳定状态达2年的微畴图案。在这方面,氢键修饰是设计具有高T值和稳定铁电畴的分子铁电体的一种可行且有效的策略。这种具有不同修饰位点的有机分子和精确的晶体工程可以提供一条有效途径,以丰富具有各种物理性质的高T值铁电体。