Center for Risk and Reliability, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, United States.
Department of African American and Africana Studies, University of Maryland, College Park, MD 20742, United States.
J Am Med Inform Assoc. 2024 Oct 1;31(10):2414-2421. doi: 10.1093/jamia/ocae102.
OBJECTIVE: Firearm injury research necessitates using data from often-exploited vulnerable populations of Black and Brown Americans. In order to reduce bias against protected attributes, this study provides a theoretical framework for establishing trust and transparency in the use of AI with the general population. METHODS: We propose a Model Facts template that is easily extendable and decomposes accuracy and demographics into standardized and minimally complex values. This framework allows general users to assess the validity and biases of a model without diving into technical model documentation. EXAMPLES: We apply the Model Facts template on 2 previously published models, a violence risk identification model and a suicide risk prediction model. We demonstrate the ease of accessing the appropriate information when the data are structured appropriately. DISCUSSION: The Model Facts template is limited in its current form to human based data and biases. Like nutrition facts, it will require educational programs for users to grasp its full utility. Human computer interaction experiments should be conducted to ensure model information is communicated accurately and in a manner that improves user decisions. CONCLUSION: The Model Facts label is the first framework dedicated to establishing trust with end users and general population consumers. Implementation of Model Facts into firearm injury research will provide public health practitioners and those impacted by firearm injury greater faith in the tools the research provides.
目的:枪支伤害研究需要利用黑人和棕色人种等经常受到剥削的弱势群体的数据。为了减少对受保护属性的偏见,本研究为在普通人群中使用人工智能建立信任和透明度提供了一个理论框架。
方法:我们提出了一个模型事实模板,该模板易于扩展,并将准确性和人口统计数据分解为标准化和最小复杂的数值。这个框架允许普通用户在不深入技术模型文档的情况下评估模型的有效性和偏差。
示例:我们将模型事实模板应用于之前发布的两个模型,一个是暴力风险识别模型,一个是自杀风险预测模型。我们展示了当数据结构合适时,访问适当信息的简便性。
讨论:模型事实模板在其当前形式上仅限于基于人类的数据和偏差。就像营养事实一样,它需要对用户进行教育计划,以充分利用其全部功能。应进行人机交互实验,以确保模型信息以准确的方式传达,并以改善用户决策的方式传达。
结论:模型事实标签是第一个专门为最终用户和普通大众消费者建立信任的框架。将模型事实纳入枪支伤害研究将为枪支伤害的公共卫生从业者和受其影响的人提供对研究提供的工具的更大信心。
J Am Med Inform Assoc. 2024-10-1
J Law Med Ethics. 2020-12
Alcohol Res. 2025-1-10
West J Emerg Med. 2021-5-19
AMA J Ethics. 2024-1-1
J Am Med Inform Assoc. 2024-10-1
JMIR Ment Health. 2023-10-17
J Trauma Acute Care Surg. 2023-7-1
JAMA Netw Open. 2023-3-1
J Racial Ethn Health Disparities. 2023-12
JAMA Netw Open. 2022-7-1
Health Aff (Millwood). 2022-2
Lancet Digit Health. 2021-3