Suppr超能文献

nBEST:基于深度学习的跨年龄、跨地点和跨物种的非人类灵长类动物大脑提取和分割工具箱。

nBEST: Deep-learning-based non-human primates Brain Extraction and Segmentation Toolbox across ages, sites and species.

机构信息

School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.

Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, USA.

出版信息

Neuroimage. 2024 Jul 15;295:120652. doi: 10.1016/j.neuroimage.2024.120652. Epub 2024 May 24.

Abstract

Accurate processing and analysis of non-human primate (NHP) brain magnetic resonance imaging (MRI) serves an indispensable role in understanding brain evolution, development, aging, and diseases. Despite the accumulation of diverse NHP brain MRI datasets at various developmental stages and from various imaging sites/scanners, existing computational tools designed for human MRI typically perform poor on NHP data, due to huge differences in brain sizes, morphologies, and imaging appearances across species, sites, and ages, highlighting the imperative for NHP-specialized MRI processing tools. To address this issue, in this paper, we present a robust, generic, and fully automated computational pipeline, called non-human primates Brain Extraction and Segmentation Toolbox (nBEST), whose main functionality includes brain extraction, non-cerebrum removal, and tissue segmentation. Building on cutting-edge deep learning techniques by employing lifelong learning to flexibly integrate data from diverse NHP populations and innovatively constructing 3D U-NeXt architecture, nBEST can well handle structural NHP brain MR images from multi-species, multi-site, and multi-developmental-stage (from neonates to the elderly). We extensively validated nBEST based on, to our knowledge, the largest assemblage dataset in NHP brain studies, encompassing 1,469 scans with 11 species (e.g., rhesus macaques, cynomolgus macaques, chimpanzees, marmosets, squirrel monkeys, etc.) from 23 independent datasets. Compared to alternative tools, nBEST outperforms in precision, applicability, robustness, comprehensiveness, and generalizability, greatly benefiting downstream longitudinal, cross-sectional, and cross-species quantitative analyses. We have made nBEST an open-source toolbox (https://github.com/TaoZhong11/nBEST) and we are committed to its continual refinement through lifelong learning with incoming data to greatly contribute to the research field.

摘要

准确处理和分析非人类灵长类动物(NHP)脑磁共振成像(MRI)对于理解大脑的进化、发育、衰老和疾病起着不可或缺的作用。尽管在不同的发育阶段和不同的成像部位/扫描仪上积累了各种 NHP 脑 MRI 数据集,但为人类 MRI 设计的现有计算工具在 NHP 数据上的表现通常较差,这是由于不同物种、部位和年龄之间大脑大小、形态和成像外观存在巨大差异,突出了对 NHP 专用 MRI 处理工具的迫切需求。为了解决这个问题,在本文中,我们提出了一个强大、通用且完全自动化的计算流水线,称为非人类灵长类动物脑提取和分割工具箱(nBEST),其主要功能包括脑提取、非脑去除和组织分割。nBEST 基于前沿的深度学习技术,采用终身学习灵活地整合来自不同 NHP 群体的数据,并创新性地构建 3D U-NeXt 架构,可以很好地处理来自多物种、多部位和多发育阶段(从新生儿到老年人)的结构 NHP 脑 MRI 图像。我们基于迄今为止在 NHP 脑研究中最大的集合数据集,对 nBEST 进行了广泛验证,该数据集包含 11 个物种(例如恒河猴、食蟹猴、黑猩猩、狨猴、松鼠猴等)的 1469 个扫描图,来自 23 个独立数据集。与替代工具相比,nBEST 在精度、适用性、鲁棒性、全面性和可推广性方面表现出色,极大地促进了下游的纵向、横断面和跨物种定量分析。我们已经将 nBEST 作为一个开源工具箱(https://github.com/TaoZhong11/nBEST),我们致力于通过终身学习和传入数据不断改进它,为研究领域做出巨大贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验