Suppr超能文献

深度贝叶斯网络(DeepBet):基于卷积神经网络的快速 T1 加权磁共振脑图像提取

deepbet: Fast brain extraction of T1-weighted MRI using Convolutional Neural Networks.

机构信息

University of Münster, Institute for Translational Psychiatry, Münster, Germany.

University of Münster, Institute for Translational Psychiatry, Münster, Germany.

出版信息

Comput Biol Med. 2024 Sep;179:108845. doi: 10.1016/j.compbiomed.2024.108845. Epub 2024 Jul 12.

Abstract

BACKGROUND

Brain extraction in magnetic resonance imaging (MRI) data is an important segmentation step in many neuroimaging preprocessing pipelines. Image segmentation is one of the research fields in which deep learning had the biggest impact in recent years. Consequently, traditional brain extraction methods are now being replaced by deep learning-based methods.

METHOD

Here, we used a unique dataset compilation comprising 7837 T1-weighted (T1w) MR images from 191 different OpenNeuro datasets in combination with advanced deep learning methods to build a fast, high-precision brain extraction tool called deepbet.

RESULTS

deepbet sets a novel state-of-the-art performance during cross-dataset validation with a median Dice score (DSC) of 99.0 on unseen datasets, outperforming the current best performing deep learning (DSC=97.9) and classic (DSC=96.5) methods. While current methods are more sensitive to outliers, deepbet achieves a Dice score of >97.4 across all 7837 images from 191 different datasets. This robustness was additionally tested in 5 external datasets, which included challenging clinical MR images. During visual exploration of each method's output which resulted in the lowest Dice score, major errors could be found for all of the tested tools except deepbet. Finally, deepbet uses a compute efficient variant of the UNet architecture, which accelerates brain extraction by a factor of ≈10 compared to current methods, enabling the processing of one image in ≈2 s on low level hardware.

CONCLUSIONS

In conclusion, deepbet demonstrates superior performance and reliability in brain extraction across a wide range of T1w MR images of adults, outperforming existing top tools. Its high minimal Dice score and minimal objective errors, even in challenging conditions, validate deepbet as a highly dependable tool for accurate brain extraction. deepbet can be conveniently installed via "pip install deepbet" and is publicly accessible at https://github.com/wwu-mmll/deepbet.

摘要

背景

磁共振成像(MRI)数据中的脑提取是许多神经影像学预处理管道中的一个重要分割步骤。图像分割是深度学习近年来影响最大的研究领域之一。因此,传统的脑提取方法现在正被基于深度学习的方法所取代。

方法

在这里,我们使用了一个独特的数据集,该数据集由来自 191 个不同 OpenNeuro 数据集的 7837 个 T1 加权(T1w)MR 图像组成,结合先进的深度学习方法,构建了一个快速、高精度的脑提取工具,称为 deepbet。

结果

在跨数据集验证中,deepbet 以中位数 Dice 得分(DSC)为 99.0 创下了新的最新性能,优于目前表现最好的深度学习(DSC=97.9)和经典(DSC=96.5)方法。虽然目前的方法对异常值更敏感,但 deepbet 在来自 191 个不同数据集的 7837 张图像中均实现了 Dice 得分>97.4。这种稳健性还在 5 个外部数据集进行了测试,其中包括具有挑战性的临床 MRI 图像。在对导致最低 Dice 得分的每种方法的输出进行的视觉探索中,除了 deepbet 之外,所有测试工具都发现了主要错误。最后,deepbet 使用了 UNet 架构的计算高效变体,与当前方法相比,加速了脑提取速度,约为 10 倍,从而能够在低端硬件上在 ≈2 s 内处理一张图像。

结论

总之,deepbet 在提取成人 T1w MR 图像方面表现出卓越的性能和可靠性,优于现有的顶级工具。其高最小 Dice 得分和最小客观误差,即使在具有挑战性的条件下,也验证了 deepbet 作为一种高度可靠的精确脑提取工具。deepbet 可以通过“pip install deepbet”方便地安装,并且可以在 https://github.com/wwu-mmll/deepbet 上公开访问。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验