ETS Ingenieros Informáticos, 16771 Universidad Politécnica de Madrid , Madrid, Spain.
Centro de Tecnología Biomédica, 16771 Universidad Politécnica de Madrid , Pozuelo de Alarcón, Madrid, Spain.
J Integr Bioinform. 2024 May 27;21(2). doi: 10.1515/jib-2023-0041. eCollection 2024 Jun 1.
Protein structure determination has made progress with the aid of deep learning models, enabling the prediction of protein folding from protein sequences. However, obtaining accurate predictions becomes essential in certain cases where the protein structure remains undescribed. This is particularly challenging when dealing with rare, diverse structures and complex sample preparation. Different metrics assess prediction reliability and offer insights into result strength, providing a comprehensive understanding of protein structure by combining different models. In a previous study, two proteins named ARM58 and ARM56 were investigated. These proteins contain four domains of unknown function and are present in spp. ARM refers to an antimony resistance marker. The study's main objective is to assess the accuracy of the model's predictions, thereby providing insights into the complexities and supporting metrics underlying these findings. The analysis also extends to the comparison of predictions obtained from other species and organisms. Notably, one of these proteins shares an ortholog with and , leading further significance to our analysis. This attempt underscored the importance of evaluating the diverse outputs from deep learning models, facilitating comparisons across different organisms and proteins. This becomes particularly pertinent in cases where no previous structural information is available.
在深度学习模型的辅助下,蛋白质结构的测定取得了进展,使得从蛋白质序列预测蛋白质折叠成为可能。然而,在某些情况下,当蛋白质结构仍然未知时,获得准确的预测变得至关重要。在处理罕见、多样的结构和复杂的样品制备时,这尤其具有挑战性。不同的指标评估预测的可靠性,并深入了解结果的强度,通过结合不同的模型,提供对蛋白质结构的全面理解。在之前的一项研究中,研究了两种名为 ARM58 和 ARM56 的蛋白质。这些蛋白质包含四个未知功能的结构域,存在于 spp.中。ARM 是指抗锑标记物。该研究的主要目的是评估模型预测的准确性,从而深入了解这些发现背后的复杂性和支持指标。分析还扩展到比较从其他物种和生物体获得的预测。值得注意的是,这些蛋白质中的一种与 和 具有直系同源物,这进一步增加了我们分析的意义。这一尝试强调了评估深度学习模型多样化输出的重要性,促进了不同生物体和蛋白质之间的比较。在没有先前结构信息的情况下,这一点尤为重要。