Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA.
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA.
Glob Chang Biol. 2024 May;30(5):e17346. doi: 10.1111/gcb.17346.
Photosynthetically active radiation (PAR) is typically defined as light with a wavelength within 400-700 nm. However, ultra-violet (UV) radiation within 280-400 nm and far-red (FR) radiation within 700-750 nm can also excite photosystems, though not as efficiently as PAR. Vegetation and land surface models (LSMs) typically do not explicitly account for UV's contribution to energy budgets or photosynthesis, nor FR's contribution to photosynthesis. However, whether neglecting UV and FR has significant impacts remains unknown. We explored how canopy radiative transfer (RT) and photosynthesis are impacted when explicitly implementing UV in the canopy RT model and accounting for UV and FR in the photosynthesis models within a next-generation LSM that can simulate hyperspectral canopy RT. We validated our improvements using photosynthesis measurements from plants under different light sources and intensities and surface reflection from an eddy-covariance tower. Our model simulations suggested that at the whole plant level, after accounting for UV and FR explicitly, chlorophyll content, leaf area index (LAI), clumping index, and solar radiation all impact the modeling of gross primary productivity (GPP). At the global scale, mean annual GPP within a grid would increase by up to 7.3% and the increase is proportional to LAI; globally integrated GPP increases by 4.6 PgC year (3.8% of the GPP without accounting for UV + FR). Further, using PAR to proxy UV could overestimate surface albedo by more than 0.1, particularly in the boreal forests. Our results highlight the importance of improving UV and FR in canopy RT and photosynthesis modeling and the necessity to implement hyperspectral or multispectral canopy RT schemes in future vegetation and LSMs.
光合有效辐射(PAR)通常定义为波长在 400-700nm 之间的光。然而,280-400nm 的紫外(UV)辐射和 700-750nm 的远红(FR)辐射也可以激发光系统,尽管不如 PAR 那样有效。植被和陆面模式(LSM)通常没有明确考虑 UV 对能量预算或光合作用的贡献,也没有考虑 FR 对光合作用的贡献。然而,忽略 UV 和 FR 是否会产生重大影响仍不清楚。我们探讨了当在冠层辐射传输(RT)模型中明确引入 UV 并在下一代能够模拟高光谱冠层 RT 的 LSM 中在光合作用模型中考虑 UV 和 FR 时,冠层 RT 和光合作用会受到怎样的影响。我们使用来自不同光源和强度下的植物光合作用测量值以及涡度协方差塔的表面反射率验证了我们的改进。我们的模型模拟表明,在整个植物水平上,在明确考虑 UV 和 FR 后,叶绿素含量、叶面积指数(LAI)、聚集指数和太阳辐射都会影响总初级生产力(GPP)的建模。在全球范围内,一个网格内的年平均 GPP 将增加多达 7.3%,并且增加与 LAI 成正比;全球综合 GPP 增加 4.6PgC 年(占不考虑 UV+FR 时 GPP 的 3.8%)。此外,使用 PAR 来代理 UV 可能会使地表反照率高估超过 0.1,特别是在北方森林。我们的研究结果强调了改进冠层 RT 和光合作用中 UV 和 FR 模型的重要性,以及在未来植被和 LSM 中实施高光谱或多光谱冠层 RT 方案的必要性。