Suppr超能文献

群体分支统计在识别局部适应性基因组特征方面的精度和效能

The Precision and Power of Population Branch Statistics in Identifying the Genomic Signatures of Local Adaptation.

作者信息

Shpak Max, Lawrence Kadee N, Pool John E

机构信息

Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

bioRxiv. 2024 May 17:2024.05.14.594139. doi: 10.1101/2024.05.14.594139.

Abstract

Population branch statistics, which estimate the branch lengths of focal populations with respect to two outgroups, have been used as an alternative to F-based genome-wide scans for identifying loci associated with local selective sweeps. In addition to the original population branch statistic (PBS), there are subsequently proposed branch rescalings: normalized population branch statistic (PBSn1), which adjusts focal branch length with respect to outgroup branch lengths at the same locus, and population branch excess (PBE), which also incorporates median branch lengths at other loci. PBSn1 and PBE have been proposed to be less sensitive to allele frequency divergence generated by background selection or geographically ubiquitous positive selection rather than local selective sweeps. However, the accuracy and statistical power of branch statistics have not been systematically assessed. To do so, we simulate genomes in representative large and small populations with varying proportions of sites evolving under genetic drift or background selection (approximated using variable ), local selective sweeps, and geographically parallel selective sweeps. We then assess the probability that local selective sweep loci are correctly identified as outliers by F and by each of the branch statistics. We find that branch statistics consistently outperform F at identifying local sweeps. When background selection and/or parallel sweeps are introduced, PBSn1 and especially PBE correctly identify local sweeps among their top outliers at a higher frequency than PBS. These results validate the greater specificity of rescaled branch statistics such as PBE to detect population-specific positive selection, supporting their use in genomic studies focused on local adaptation.

摘要

群体分支统计,即估计焦点群体相对于两个外群的分支长度,已被用作基于F统计量的全基因组扫描的替代方法,用于识别与局部选择性清除相关的基因座。除了原始的群体分支统计量(PBS)之外,随后还提出了分支重新缩放方法:标准化群体分支统计量(PBSn1),它在同一基因座处根据外群分支长度调整焦点分支长度;以及群体分支过量(PBE),它还纳入了其他基因座的中位数分支长度。有人提出,PBSn1和PBE对由背景选择或地理上普遍存在的正选择而非局部选择性清除产生的等位基因频率差异不太敏感。然而,分支统计量的准确性和统计功效尚未得到系统评估。为此,我们在具有不同比例位点的代表性大群体和小群体中模拟基因组,这些位点在遗传漂变或背景选择(使用可变的 近似)、局部选择性清除和地理上平行的选择性清除下进化。然后,我们评估通过F统计量和每个分支统计量将局部选择性清除基因座正确识别为异常值的概率。我们发现,在识别局部清除方面,分支统计量始终优于F统计量。当引入背景选择和/或平行清除时,PBSn1,尤其是PBE,在其顶级异常值中正确识别局部清除的频率高于PBS。这些结果验证了诸如PBE等重新缩放的分支统计量在检测群体特异性正选择方面具有更高的特异性,支持它们在专注于局部适应的基因组研究中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a676/11118325/eac140df5c5e/nihpp-2024.05.14.594139v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验