Samimi Kayvan, Pasachhe Ojaswi, Guzman Emmanuel Contreras, Riendeau Jeremiah, Gillette Amani A, Pham Dan L, Wiech Kasia J, Moore Darcie L, Skala Melissa C
bioRxiv. 2024 May 18:2024.05.15.594394. doi: 10.1101/2024.05.15.594394.
Autofluorescence lifetime imaging microscopy (FLIM) is sensitive to metabolic changes in single cells based on changes in the protein-binding activities of the metabolic co-enzymes NAD(P)H. However, FLIM typically relies on time-correlated single-photon counting (TCSPC) detection electronics on laser-scanning microscopes, which are expensive, low-throughput, and require substantial post-processing time for cell segmentation and analysis. Here, we present a fluorescence lifetime-sensitive flow cytometer that offers the same TCSPC temporal resolution in a flow geometry, with low-cost single-photon excitation sources, a throughput of tens of cells per second, and real-time single-cell analysis. The system uses a 375nm picosecond-pulsed diode laser operating at 50MHz, alkali photomultiplier tubes, an FPGA-based time tagger, and can provide real-time phasor-based classification ( ., gating) of flowing cells. A CMOS camera produces simultaneous brightfield images using far-red illumination. A second PMT provides two-color analysis. Cells are injected into the microfluidic channel using a syringe pump at 2-5 mm/s with nearly 5ms integration time per cell, resulting in a light dose of 2.65 J/cm that is well below damage thresholds (25 J/cm at 375 nm). Our results show that cells remain viable after measurement, and the system is sensitive to autofluorescence lifetime changes in Jurkat T cells with metabolic perturbation (sodium cyanide), quiescent vs. activated (CD3/CD28/CD2) primary human T cells, and quiescent vs. activated primary adult mouse neural stem cells, consistent with prior studies using multiphoton FLIM. This TCSPC-based autofluorescence lifetime flow cytometer provides a valuable label-free method for real-time analysis of single-cell function and metabolism with higher throughput than laser-scanning microscopy systems.
自发荧光寿命成像显微镜(FLIM)基于代谢辅酶NAD(P)H的蛋白结合活性变化,对单细胞中的代谢变化敏感。然而,FLIM通常依赖于激光扫描显微镜上的时间相关单光子计数(TCSPC)检测电子设备,这些设备昂贵、通量低,并且细胞分割和分析需要大量的后处理时间。在这里,我们展示了一种荧光寿命敏感的流式细胞仪,它在流动几何结构中提供与TCSPC相同的时间分辨率,具有低成本的单光子激发源,每秒数十个细胞的通量,以及实时单细胞分析。该系统使用一台工作在50MHz的375nm皮秒脉冲二极管激光器、碱金属光电倍增管、基于FPGA的时间标记器,并且可以对流过的细胞进行基于相量的实时分类(即门控)。一台CMOS相机使用远红照明产生同步明场图像。第二个光电倍增管提供双色分析。使用注射泵以2-5mm/s的速度将细胞注入微流控通道,每个细胞的积分时间接近5ms,导致光剂量为2.65J/cm²,远低于损伤阈值(375nm处为25J/cm²)。我们的结果表明,测量后细胞仍保持活力,并且该系统对Jurkat T细胞的代谢扰动(氰化钠)、静止与活化的(CD3/CD28/CD2)原代人T细胞以及静止与活化的原代成年小鼠神经干细胞中的自发荧光寿命变化敏感,这与先前使用多光子FLIM的研究一致。这种基于TCSPC的自发荧光寿命流式细胞仪提供了一种有价值的无标记方法,用于实时分析单细胞功能和代谢,通量高于激光扫描显微镜系统。