Opt Lett. 2021 May 1;46(9):2168-2171. doi: 10.1364/OL.422445.
Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique, capable of label-free assessment of the metabolic state and function within single cells. The FLIM measurements of autofluorescence were recently shown to be sensitive to the functional state and subtype of T cells. Therefore, autofluorescence FLIM could improve cell manufacturing technologies for adoptive immunotherapy, which currently require a time-intensive process of cell labeling with fluorescent antibodies. However, current autofluorescence FLIM implementations are typically too slow, bulky, and prohibitively expensive for use in cell manufacturing pipelines. Here we report a single photon-excited confocal whole-cell autofluorescence system that uses fast field-programmable gate array-based time tagging electronics to achieve time-correlated single photon counting (TCSPC) of single-cell autofluorescence. The system includes simultaneous near-infrared bright-field imaging and is sensitive to variations in the fluorescence decay profile of the metabolic coenzyme NAD(P)H in human T cells due to the activation state. The classification of activated and quiescent T cells achieved high accuracy and precision (area under the receiver operating characteristic curve, AUC = 0.92). The lower-cost, higher acquisition speed, and resistance to pile-up effects at high photon flux compared to traditional multiphoton-excited FLIM and TCSPC implementations with similar SNR make this system attractive for integration into flow cytometry, sorting, and quality control in cell manufacturing.
荧光寿命成像显微镜(FLIM)是一种强大的技术,能够对单个细胞内的代谢状态和功能进行无标记评估。最近的研究表明,FLIM 对自发荧光的测量对 T 细胞的功能状态和亚型具有敏感性。因此,自发荧光 FLIM 可以改进用于过继免疫治疗的细胞制造技术,目前这些技术需要用荧光抗体对细胞进行耗时的标记。然而,目前的自发荧光 FLIM 实现方法通常速度太慢、体积庞大且价格昂贵,无法用于细胞制造管道。在这里,我们报告了一种单光子激发共焦全细胞自发荧光系统,该系统使用基于快速现场可编程门阵列的时间标记电子技术来实现单细胞自发荧光的时间相关单光子计数(TCSPC)。该系统包括同时的近红外亮场成像,并且由于激活状态,对人 T 细胞代谢辅酶 NAD(P)H 的荧光衰减曲线的变化敏感。激活和静止 T 细胞的分类具有很高的准确性和精度(接收器操作特性曲线下的面积,AUC = 0.92)。与具有相似 SNR 的传统多光子激发 FLIM 和 TCSPC 实现相比,该系统具有成本更低、采集速度更快以及在高光子通量下抗堆积效应的优点,使其成为流式细胞术、分选和细胞制造质量控制中集成的有吸引力的选择。