Asadpour Abdoreza, Tan Hui, Lenfesty Brendan, Wong-Lin KongFatt
Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Magee Campus, Derry~Londonderry, Northern Ireland UK.
Département Electronique et Technologies Numériques, Polytech Nantes, Nantes Université, Nantes, France.
Comput Brain Behav. 2024;7(2):195-206. doi: 10.1007/s42113-023-00194-1. Epub 2024 Jan 11.
Sequential sampling models of decision-making involve evidence accumulation over time and have been successful in capturing choice behaviour. A popular model is the drift-diffusion model (DDM). To capture the finer aspects of choice reaction times (RTs), time-variant gain features representing urgency signals have been implemented in DDM that can exhibit slower error RTs than correct RTs. However, time-variant gain is often implemented on both DDM's signal and noise features, with the assumption that increasing gain on the drift rate (due to urgency) is similar to DDM with collapsing decision bounds. Hence, it is unclear whether gain effects on just the signal or noise feature can lead to a different choice behaviour. This work presents an alternative DDM variant, focusing on the implications of time-variant gain mechanisms, constrained by model parsimony. Specifically, using computational modelling of choice behaviour of rats, monkeys, and humans, we systematically showed that time-variant gain only on the DDM's noise was sufficient to produce slower error RTs, as in monkeys, while time-variant gain only on drift rate leads to faster error RTs, as in rodents. We also found minimal effects of time-variant gain in humans. By highlighting these patterns, this study underscores the utility of group-level modelling in capturing general trends and effects consistent across species. Thus, time-variant gain on DDM's different components can lead to different choice behaviours, shed light on the underlying time-variant gain mechanisms for different species, and can be used for systematic data fitting.
The online version contains supplementary material available at 10.1007/s42113-023-00194-1.
决策的序贯抽样模型涉及随时间积累证据,并且在捕捉选择行为方面很成功。一种流行的模型是漂移扩散模型(DDM)。为了捕捉选择反应时间(RT)的更细微方面,在DDM中实现了表示紧急信号的时变增益特征,该特征可能表现出错误RT比正确RT更慢。然而,时变增益通常在DDM的信号和噪声特征上都实现,其假设是漂移率上的增益增加(由于紧急情况)类似于具有收缩决策边界的DDM。因此,尚不清楚仅对信号或噪声特征的增益效应是否会导致不同的选择行为。这项工作提出了一种替代的DDM变体,重点关注时变增益机制的影响,并受模型简约性的约束。具体而言,通过对大鼠、猴子和人类的选择行为进行计算建模,我们系统地表明,仅在DDM的噪声上的时变增益足以产生更慢的错误RT,如在猴子中那样,而仅在漂移率上的时变增益会导致更快的错误RT,如在啮齿动物中那样。我们还发现时变增益对人类的影响最小。通过突出这些模式,本研究强调了群体水平建模在捕捉跨物种一致的总体趋势和效应方面的效用。因此,DDM不同组件上的时变增益可导致不同的选择行为,阐明不同物种潜在的时变增益机制,并可用于系统的数据拟合。
在线版本包含可在10.1007/s42113-023-00194-1获取的补充材料。