Suppr超能文献

利用葡萄糖衍生物进行前体导向生物合成以获得具有增强物理性能的棉纤维。

Harnessing precursor-directed biosynthesis with glucose derivatives to access cotton fibers with enhanced physical properties.

作者信息

Kuperman Ofir Aharon, de Andrade Peterson, Sui XiaoMeng, Maria Raquel, Kaplan-Ashiri Ifat, Jiang Qixiang, Terlier Tanguy, Kirkensgaard Jacob Judas Kain, Field Robert A, Natalio Filipe

机构信息

Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.

Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, Manchester, UK.

出版信息

Cell Rep Phys Sci. 2024 May 15;5(5):101963. doi: 10.1016/j.xcrp.2024.101963.

Abstract

Cotton ovule cultures are a promising platform for exploring biofabrication of fibers with tailored properties. When the ovules' growth medium is supplemented with chemically synthesized cellulose precursors, it results in their integration into the developing fibers, thereby tailoring their end properties. Here, we report the feeding of synthetic glucosyl phosphate derivative, 6-deoxy-6-fluoro-glucose-1-phosphate (6F-Glc-1P) to cotton ovules growing , demonstrating the metabolic incorporation of 6F-Glc into the fibers with enhanced mechanical properties and moisture-retention capacity while emphasizing the role of molecular hierarchical architecture in defining functional characteristics and mechanical properties. This incorporation strategy bypasses the early steps of conventional metabolic pathways while broadening the range of functionalities that can be employed to customize fiber end properties. Our approach combines materials science, chemistry, and plant sciences to illustrate the innovation required to find alternative solutions for sustainable production of functional cotton fibers with enhanced and emergent properties.

摘要

棉花胚珠培养是探索定制性能纤维生物制造的一个有前景的平台。当胚珠生长培养基中添加化学合成的纤维素前体时,会导致它们整合到发育中的纤维中,从而调整其最终性能。在此,我们报告了向生长中的棉花胚珠投喂合成葡萄糖磷酸衍生物6-脱氧-6-氟葡萄糖-1-磷酸(6F-Glc-1P),证明了6F-Glc代谢掺入纤维中,增强了纤维的机械性能和保湿能力,同时强调了分子层次结构在定义功能特性和机械性能方面的作用。这种掺入策略绕过了传统代谢途径的早期步骤,同时拓宽了可用于定制纤维最终性能的功能范围。我们的方法结合了材料科学、化学和植物科学,以说明为可持续生产具有增强和新出现性能的功能性棉纤维寻找替代解决方案所需的创新。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验