Candry Pieter, Godfrey Bruce J, Winkler Mari Karoliina-Henriikka
Civil and Environmental Engineering, University of Washington, 201 More Hall, Seattle, WA 98195-2700, United States.
Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE, Wageningen, The Netherlands.
ISME Commun. 2024 May 4;4(1):ycae068. doi: 10.1093/ismeco/ycae068. eCollection 2024 Jan.
Particulate carbon (C) degradation in soils is a critical process in the global C cycle governing greenhouse gas fluxes and C storage. Millimeter-scale soil aggregates impose strong controls on particulate C degradation by inducing chemical gradients of e.g. oxygen, as well as limiting microbial mobility in pore structures. To date, experimental models of soil aggregates have incorporated porosity and chemical gradients but not particulate C. Here, we demonstrate a proof-of-concept encapsulating microbial cells and particulate C substrates in hydrogel matrices as a novel experimental model for soil aggregates. was co-encapsulated with cellulose in millimeter-scale polyethyleneglycol-dimethacrylate (PEGDMA) hydrogel beads. Microbial activity was delayed in hydrogel-encapsulated conditions, with cellulose degradation and fermentation activity being observed after 13 days of incubation. Unexpectedly, hydrogel encapsulation shifted product formation of from an ethanol-lactate-acetate mixture to an acetate-dominated product profile. Fluorescence microscopy enabled simultaneous visualization of the PEGDMA matrix, cellulose particles, and individual cells in the matrix, demonstrating growth on cellulose particles during incubation. Together, these microbe-cellulose-PEGDMA hydrogels present a novel, reproducible experimental soil surrogate to connect single cells to process outcomes at the scale of soil aggregates and ecosystems.
土壤中颗粒态碳(C)的降解是全球碳循环中的一个关键过程,它控制着温室气体通量和碳储存。毫米级的土壤团聚体通过诱导如氧气等化学梯度以及限制孔隙结构中微生物的移动性,对颗粒态碳的降解施加了强有力的控制。迄今为止,土壤团聚体的实验模型纳入了孔隙率和化学梯度,但没有涉及颗粒态碳。在此,我们展示了一种概念验证,即将微生物细胞和颗粒态碳底物封装在水凝胶基质中,作为一种新型的土壤团聚体实验模型。 与纤维素共同封装在毫米级聚乙二醇二甲基丙烯酸酯(PEGDMA)水凝胶珠中。在水凝胶封装条件下,微生物活性延迟,在培养13天后观察到纤维素降解和发酵活性。出乎意料的是,水凝胶封装使 的产物形成从乙醇 - 乳酸 - 乙酸混合物转变为以乙酸为主的产物分布。荧光显微镜能够同时可视化PEGDMA基质、纤维素颗粒以及基质中的单个细胞,表明在培养过程中细胞在纤维素颗粒上生长。总之,这些微生物 - 纤维素 - PEGDMA水凝胶呈现出一种新型的、可重复的实验性土壤替代物,用于在土壤团聚体和生态系统尺度上连接单细胞与过程结果。