Suppr超能文献

用于增强宫颈癌中人乳头瘤病毒检测的深度特征提取和精细κ最近邻算法——阴道镜图像的综合分析

Deep feature extraction and fine κ-nearest neighbour for enhanced human papillomavirus detection in cervical cancer - a comprehensive analysis of colposcopy images.

作者信息

Jena Lipsarani, Behera Santi Kumari, Dash Srikanta, Sethy Prabira Kumar

机构信息

Veer Surendra Sai University of Technology, Burla, India.

GITA Autonomous College, Bhubaneswar, India.

出版信息

Contemp Oncol (Pozn). 2024;28(1):37-44. doi: 10.5114/wo.2024.139091. Epub 2024 Apr 26.

Abstract

INTRODUCTION

This study introduces a novel methodology for classifying human papillomavirus (HPV) using colposcopy images, focusing on its potential in diagnosing cervical cancer, the second most prevalent malignancy among women globally. Addressing a crucial gap in the literature, this study highlights the unexplored territory of HPV-based colposcopy image diagnosis for cervical cancer. Emphasising the suitability of colposcopy screening in underdeveloped and low-income regions owing to its small, cost-effective setup that eliminates the need for biopsy specimens, the methodological framework includes robust dataset augmentation and feature extraction using EfficientNetB0 architecture.

MATERIAL AND METHODS

The optimal convolutional neural network model was selected through experimentation with 19 architectures, and fine-tuning with the fine κ-nearest neighbour algorithm enhanced the classification precision, enabling detailed distinctions with a single neighbour.

RESULTS

The proposed methodology achieved outstanding results, with a validation accuracy of 99.9% and an area under the curve (AUC) of 99.86%, with robust performance on test data, 91.4% accuracy, and an AUC of 91.76%. These remarkable findings underscore the effectiveness of the integrated approach, which offers a highly accurate and reliable system for HPV classification.Conclusions: This research sets the stage for advancements in medical imaging applications, prompting future refinement and validation in diverse clinical settings.

摘要

引言

本研究介绍了一种利用阴道镜图像对人乳头瘤病毒(HPV)进行分类的新方法,重点关注其在诊断宫颈癌方面的潜力。宫颈癌是全球女性中第二常见的恶性肿瘤。本研究填补了文献中的一个关键空白,突出了基于HPV的阴道镜图像诊断宫颈癌这一未被探索的领域。鉴于阴道镜筛查因其小型、经济高效的设置而无需活检标本,适用于欠发达和低收入地区,该方法框架包括强大的数据集增强以及使用EfficientNetB0架构进行特征提取。

材料与方法

通过对19种架构进行实验选择了最优卷积神经网络模型,并使用精细κ最近邻算法进行微调提高了分类精度,能够与单个邻居进行详细区分。

结果

所提出的方法取得了优异的结果,验证准确率为99.9%,曲线下面积(AUC)为99.86%,在测试数据上表现稳健,准确率为91.4%,AUC为91.76%。这些显著发现强调了综合方法的有效性,该方法为HPV分类提供了一个高度准确和可靠的系统。结论:本研究为医学成像应用的进展奠定了基础,促使未来在不同临床环境中进行改进和验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe91/11117158/21508240af79/WO-28-54021-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验