Suppr超能文献

基于时滞阴道镜图像的计算机辅助宫颈癌诊断

Computer-Aided Cervical Cancer Diagnosis Using Time-Lapsed Colposcopic Images.

出版信息

IEEE Trans Med Imaging. 2020 Nov;39(11):3403-3415. doi: 10.1109/TMI.2020.2994778. Epub 2020 Oct 28.

Abstract

Cervical cancer causes the fourth most cancer-related deaths of women worldwide. Early detection of cervical intraepithelial neoplasia (CIN) can significantly increase the survival rate of patients. In this paper, we propose a deep learning framework for the accurate identification of LSIL+ (including CIN and cervical cancer) using time-lapsed colposcopic images. The proposed framework involves two main components, i.e., key-frame feature encoding networks and feature fusion network. The features of the original (pre-acetic-acid) image and the colposcopic images captured at around 60s, 90s, 120s and 150s during the acetic acid test are encoded by the feature encoding networks. Several fusion approaches are compared, all of which outperform the existing automated cervical cancer diagnosis systems using a single time slot. A graph convolutional network with edge features (E-GCN) is found to be the most suitable fusion approach in our study, due to its excellent explainability consistent with the clinical practice. A large-scale dataset, containing time-lapsed colposcopic images from 7,668 patients, is collected from the collaborative hospital to train and validate our deep learning framework. Colposcopists are invited to compete with our computer-aided diagnosis system. The proposed deep learning framework achieves a classification accuracy of 78.33%-comparable to that of an in-service colposcopist-which demonstrates its potential to provide assistance in the realistic clinical scenario.

摘要

宫颈癌是全球导致女性癌症相关死亡的第四大原因。早期发现宫颈上皮内瘤变(CIN)可以显著提高患者的生存率。本文提出了一种基于深度学习的方法,用于使用时相性阴道镜图像准确识别 LSIL+(包括 CIN 和宫颈癌)。所提出的框架包括两个主要部分,即关键帧特征编码网络和特征融合网络。原始(预醋酸)图像和在醋酸试验期间大约 60s、90s、120s 和 150s 时捕获的阴道镜图像的特征由特征编码网络编码。比较了几种融合方法,所有方法的性能都优于使用单个时间槽的现有自动化宫颈癌诊断系统。由于其与临床实践一致的出色可解释性,我们发现带有边缘特征的图卷积网络(E-GCN)是最适合的融合方法。从合作医院收集了包含 7668 名患者的时相性阴道镜图像的大型数据集,用于训练和验证我们的深度学习框架。邀请阴道镜专家与我们的计算机辅助诊断系统竞争。所提出的深度学习框架的分类准确率为 78.33%-与在职阴道镜专家相当-这表明它有可能在实际临床场景中提供帮助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验