Suppr超能文献

drGAT:利用药物-细胞-基因异质网络进行药物反应的注意力引导基因评估

drGAT: Attention-Guided Gene Assessment of Drug Response Utilizing a Drug-Cell-Gene Heterogeneous Network.

作者信息

Inoue Yoshitaka, Lee Hunmin, Fu Tianfan, Luna Augustin

机构信息

Department of Computer Science and Engineering, University of Minnesota.

Computational Biology Branch, National Library of Medicine.

出版信息

ArXiv. 2024 May 14:arXiv:2405.08979v1.

Abstract

Drug development is a lengthy process with a high failure rate. Increasingly, machine learning is utilized to facilitate the drug development processes. These models aim to enhance our understanding of drug characteristics, including their activity in biological contexts. However, a major challenge in drug response (DR) prediction is model interpretability as it aids in the validation of findings. This is important in biomedicine, where models need to be understandable in comparison with established knowledge of drug interactions with proteins. drGAT, a graph deep learning model, leverages a heterogeneous graph composed of relationships between proteins, cell lines, and drugs. drGAT is designed with two objectives: DR prediction as a binary sensitivity prediction and elucidation of drug mechanism from attention coefficients. drGAT has demonstrated superior performance over existing models, achieving 78% accuracy (and precision), and 76% F1 score for 269 DNA-damaging compounds of the NCI60 drug response dataset. To assess the model's interpretability, we conducted a review of drug-gene co-occurrences in Pubmed abstracts in comparison to the top 5 genes with the highest attention coefficients for each drug. We also examined whether known relationships were retained in the model by inspecting the neighborhoods of topoisomerase-related drugs. For example, our model retained TOP1 as a highly weighted predictive feature for irinotecan and topotecan, in addition to other genes that could potentially be regulators of the drugs. Our method can be used to accurately predict sensitivity to drugs and may be useful in the identification of biomarkers relating to the treatment of cancer patients.

摘要

药物研发是一个漫长的过程,失败率很高。机器学习越来越多地被用于促进药物研发过程。这些模型旨在加深我们对药物特性的理解,包括它们在生物学环境中的活性。然而,药物反应(DR)预测中的一个主要挑战是模型的可解释性,因为它有助于研究结果的验证。这在生物医学中很重要,在生物医学领域,与药物与蛋白质相互作用的既定知识相比,模型需要是可理解的。drGAT是一种图深度学习模型,它利用了一个由蛋白质、细胞系和药物之间的关系组成的异构图。drGAT的设计有两个目标:将DR预测作为二元敏感性预测,并从注意力系数中阐明药物作用机制。drGAT已证明其性能优于现有模型,对于NCI60药物反应数据集中的269种DNA损伤化合物,其准确率(和精确率)达到78%,F1分数达到76%。为了评估模型的可解释性,我们在PubMed摘要中对药物-基因共现情况进行了综述,并与每种药物注意力系数最高的前5个基因进行了比较。我们还通过检查拓扑异构酶相关药物的邻域来研究模型中是否保留了已知关系。例如,我们的模型将TOP1保留为伊立替康和拓扑替康的高权重预测特征,此外还有其他可能是这些药物调节剂的基因。我们的方法可用于准确预测对药物的敏感性,可能有助于识别与癌症患者治疗相关的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a72/11118660/6b64afe45c87/nihpp-2405.08979v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验