Suppr超能文献

基于药物基因组学的术后脊柱疼痛管理和个体化治疗中阿片类药物处方的计算机模拟研究。

A Pharmacogenomics-Based In Silico Investigation of Opioid Prescribing in Post-operative Spine Pain Management and Personalized Therapy.

机构信息

Division of Personalized Pain Therapy Research & Education, Center for Advanced Spine Care of Southern Arizona, Arizona, USA.

Department of Orthopaedics, Fundación Universitaria Sanitas and Member of Colombian National Academy of Medicine, Bogotá, DC, Colombia.

出版信息

Cell Mol Neurobiol. 2024 May 27;44(1):47. doi: 10.1007/s10571-024-01466-5.

Abstract

Considering the variability in individual responses to opioids and the growing concerns about opioid addiction, prescribing opioids for postoperative pain management after spine surgery presents significant challenges. Therefore, this study undertook a novel pharmacogenomics-based in silico investigation of FDA-approved opioid medications. The DrugBank database was employed to identify all FDA-approved opioids. Subsequently, the PharmGKB database was utilized to filter through all variant annotations associated with the relevant genes. In addition, the dpSNP ( https://www.ncbi.nlm.nih.gov/snp/ ), a publicly accessible repository, was used. Additional analyses were conducted using STRING-MODEL (version 12), Cytoscape (version 3.10.1), miRTargetLink.2, and NetworkAnalyst (version 3). The study identified 125 target genes of FDA-approved opioids, encompassing 7019 variant annotations. Of these, 3088 annotations were significant and pertained to 78 genes. During variant annotation assessments (VAA), 672 variants remained after filtration. Further in-depth filtration based on variant functions yielded 302 final filtered variants across 56 genes. The Monoamine GPCRs pathway emerged as the most significant signaling pathway. Protein-protein interaction (PPI) analysis revealed a fully connected network comprising 55 genes. Gene-miRNA Interaction (GMI) analysis of these 55 candidate genes identified miR-16-5p as a pivotal miRNA in this network. Protein-Drug Interaction (PDI) assessment showed that multiple drugs, including Ibuprofen, Nicotine, Tramadol, Haloperidol, Ketamine, L-Glutamic Acid, Caffeine, Citalopram, and Naloxone, had more than one interaction. Furthermore, Protein-Chemical Interaction (PCI) analysis highlighted that ABCB1, BCL2, CYP1A2, KCNH2, PTGS2, and DRD2 were key targets of the proposed chemicals. Notably, 10 chemicals, including carbamylhydrazine, tetrahydropalmatine, Terazosin, beta-methylcholine, rubimaillin, and quinelorane, demonstrated dual interactions with the aforementioned target genes. This comprehensive review offers multiple strong, evidence-based in silico findings regarding opioid prescribing in spine pain management, introducing 55 potential genes. The insights from this report can be applied in exome analysis as a pharmacogenomics (PGx) panel for pain susceptibility, facilitating individualized opioid prescribing through genotyping of related variants. The article also points out that African Americans represent an important group that displays a high catabolism of opioids and suggest the need for a personalized therapeutic approach based on genetic information.

摘要

考虑到个体对阿片类药物反应的可变性以及对阿片类药物成瘾的日益关注,在脊柱手术后开具阿片类药物进行术后疼痛管理具有很大的挑战性。因此,本研究采用基于药物基因组学的新型计算机模拟方法对 FDA 批准的阿片类药物进行研究。利用 DrugBank 数据库确定所有 FDA 批准的阿片类药物。随后,利用 PharmGKB 数据库筛选与相关基因相关的所有变体注释。此外,还使用了公开可用的 dpSNP(https://www.ncbi.nlm.nih.gov/snp/)数据库。使用 STRING-MODEL(版本 12)、Cytoscape(版本 3.10.1)、miRTargetLink.2 和 NetworkAnalyst(版本 3)进行了额外的分析。研究确定了 125 种 FDA 批准的阿片类药物的靶基因,包含 7019 种变体注释。其中 3088 种注释是显著的,涉及 78 个基因。在变体注释评估(VAA)过程中,过滤后剩下 672 个变体。进一步基于变体功能的深入过滤,得到 56 个基因的 302 个最终过滤变体。单胺能 GPCR 途径是最显著的信号通路。蛋白质-蛋白质相互作用(PPI)分析显示,包含 55 个基因的完全连通网络。对这 55 个候选基因的基因- miRNA 相互作用(GMI)分析确定 miR-16-5p 是该网络中的关键 miRNA。对这些候选基因的药物-蛋白质相互作用(PDI)评估表明,多种药物,包括布洛芬、尼古丁、曲马多、氟哌啶醇、氯胺酮、L-谷氨酸、咖啡因、西酞普兰和纳洛酮,具有多种相互作用。此外,蛋白质-化学物质相互作用(PCI)分析突出了 ABCB1、BCL2、CYP1A2、KCNH2、PTGS2 和 DRD2 是提出的化学物质的关键靶标。值得注意的是,包括氨甲酰肼、延胡索乙素、特拉唑嗪、β-甲基胆碱、rubimaillin 和喹诺酮在内的 10 种化学物质与上述靶基因均具有双重相互作用。这项全面的综述提供了多个关于脊柱疼痛管理中阿片类药物处方的基于证据的强大计算机模拟发现,提出了 55 个潜在的基因。本报告中的研究结果可作为外显子组分析中的多态性基因组学(PGx)面板,用于疼痛易感性,通过相关变体的基因分型实现个体化阿片类药物处方。文章还指出,非裔美国人是一种阿片类药物代谢率高的重要人群,并建议根据遗传信息采用个性化的治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3374/11407163/776319dd75e2/10571_2024_1466_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验