Suppr超能文献

基于心脏磁共振非增强电影序列的放射组学在高血压性心脏病早期诊断中的应用研究。

A study on the application of radiomics based on cardiac MR non-enhanced cine sequence in the early diagnosis of hypertensive heart disease.

机构信息

Department of Radiology, Affiliated Hospital of Hebei University/ Clinical Medical College, Hebei University, Baoding, 071000, China.

Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Baoding, 071000, China.

出版信息

BMC Med Imaging. 2024 May 27;24(1):124. doi: 10.1186/s12880-024-01301-9.

Abstract

BACKGROUND

The prevalence of hypertensive heart disease (HHD) is high and there is currently no easy way to detect early HHD. Explore the application of radiomics using cardiac magnetic resonance (CMR) non-enhanced cine sequences in diagnosing HHD and latent cardiac changes caused by hypertension.

METHODS

132 patients who underwent CMR scanning were divided into groups: HHD (42), hypertension with normal cardiac structure and function (HWN) group (46), and normal control (NOR) group (44). Myocardial regions of the end-diastolic (ED) and end-systolic (ES) phases of the CMR short-axis cine sequence images were segmented into regions of interest (ROI). Three feature subsets (ED, ES, and ED combined with ES) were established after radiomic least absolute shrinkage and selection operator feature selection. Nine radiomic models were built using random forest (RF), support vector machine (SVM), and naive Bayes. Model performance was analyzed using receiver operating characteristic curves, and metrics like accuracy, area under the curve (AUC), precision, recall, and specificity.

RESULTS

The feature subsets included first-order, shape, and texture features. SVM of ED combined with ES achieved the highest accuracy (0.833), with a macro-average AUC of 0.941. AUCs for HHD, HWN, and NOR identification were 0.967, 0.876, and 0.963, respectively. Precisions were 0.972, 0.740, and 0.826; recalls were 0.833, 0.804, and 0.863, respectively; and specificities were 0.989, 0.863, and 0.909, respectively.

CONCLUSIONS

Radiomics technology using CMR non-enhanced cine sequences can detect early cardiac changes due to hypertension. It holds promise for future use in screening for latent cardiac damage in early HHD.

摘要

背景

高血压性心脏病(HHD)的患病率较高,目前尚无简便的方法检测早期 HHD。探讨使用心脏磁共振(CMR)非增强电影序列进行放射组学分析诊断 HHD 以及高血压引起的潜在心脏变化的应用。

方法

将 132 例接受 CMR 扫描的患者分为 HHD(42 例)、高血压伴正常心脏结构和功能(HWN)组(46 例)和正常对照组(NOR)组(44 例)。CMR 短轴电影序列图像的舒张末期(ED)和收缩末期(ES)阶段的心肌区域被分割为感兴趣区(ROI)。在放射组学最小绝对值收缩和选择算子特征选择后,建立了三个特征子集(ED、ES 和 ED 与 ES 相结合)。使用随机森林(RF)、支持向量机(SVM)和朴素贝叶斯建立了 9 个放射组学模型。使用接收者操作特征曲线分析模型性能,并评估准确性、曲线下面积(AUC)、精度、召回率和特异性等指标。

结果

特征子集包括一阶、形状和纹理特征。ED 与 ES 相结合的 SVM 实现了最高的准确性(0.833),其宏观平均 AUC 为 0.941。HHD、HWN 和 NOR 识别的 AUC 分别为 0.967、0.876 和 0.963。精度分别为 0.972、0.740 和 0.826;召回率分别为 0.833、0.804 和 0.863;特异性分别为 0.989、0.863 和 0.909。

结论

使用 CMR 非增强电影序列的放射组学技术可以检测高血压引起的早期心脏变化。它有望在未来用于筛查早期 HHD 中的潜在心脏损伤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/172a/11129462/dfa4a8054724/12880_2024_1301_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验