Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
J Nanobiotechnology. 2024 May 27;22(1):292. doi: 10.1186/s12951-024-02561-x.
The use of gene therapy to deliver microRNAs (miRNAs) has gradually translated to preclinical application for the treatment of intervertebral disc degeneration (IDD). However, the effects of miRNAs are hindered by the short half-life time and the poor cellular uptake, owing to the lack of efficient delivery systems. Here, we investigated nucleus pulposus cell (NPC) specific aptamer-decorated polymeric nanoparticles that can load miR-150-5p for IDD treatment.
The role of miR-150-5p during disc development and degeneration was examined by miR-150-5p knockout (KO) mice. Histological analysis was undertaken in disc specimens. The functional mechanism of miR-150-5p in IDD development was investigated by qRT-PCR assay, Western blot, coimmunoprecipitation and immunofluorescence. NPC specific aptamer-decorated nanoparticles was designed, and its penetration, stability and safety were evaluated. IDD progression was assessed by radiological analysis including X-ray and MRI, after the annulus fibrosus needle puncture surgery with miR-150-5p manipulation by intradiscal injection of nanoparticles. The investigations into the interaction between aptamer and receptor were conducted using mass spectrometry, molecular docking and molecular dynamics simulations.
We investigated NPC-specific aptamer-decorated polymeric nanoparticles that can bind to miR-150-5p for IDD treatment. Furthermore, we detected that nanoparticle-loaded miR-150-5p inhibitors alleviated NPC senescence in vitro, and the effects of the nanoparticles were sustained for more than 3 months in vivo. The microenvironment of NPCs improves the endo/lysosomal escape of miRNAs, greatly inhibiting the secretion of senescence-associated factors and the subsequent degeneration of NPCs. Importantly, nanoparticles delivering miR-150-5p inhibitors attenuated needle puncture-induced IDD in mouse models by targeting FBXW11 and inhibiting TAK1 ubiquitination, resulting in the downregulation of NF-kB signaling pathway activity.
NPC-targeting nanoparticles delivering miR-150-5p show favorable therapeutic efficacy and safety and may constitute a promising treatment for IDD.
利用基因疗法递送 microRNAs(miRNAs)已逐渐转化为用于治疗椎间盘退变(IDD)的临床前应用。然而,由于缺乏有效的递送系统,miRNAs 的作用受到半衰期短和细胞摄取率低的限制。在这里,我们研究了能够负载 miR-150-5p 用于 IDD 治疗的核芯细胞(NPC)特异性适体修饰的聚合物纳米颗粒。
通过 miR-150-5p 敲除(KO)小鼠研究了 miR-150-5p 在椎间盘发育和退变过程中的作用。对椎间盘标本进行组织学分析。通过 qRT-PCR 测定、Western blot、共免疫沉淀和免疫荧光法研究了 miR-150-5p 在 IDD 发展中的功能机制。设计了 NPC 特异性适体修饰的纳米颗粒,并对其穿透性、稳定性和安全性进行了评估。通过 X 射线和 MRI 等放射学分析评估 IDD 进展,通过椎间盘内注射纳米颗粒来操纵 miR-150-5p 后,进行纤维环针穿刺手术。通过质谱、分子对接和分子动力学模拟研究了适体与受体之间的相互作用。
我们研究了可结合 miR-150-5p 用于 IDD 治疗的 NPC 特异性适体修饰的聚合物纳米颗粒。此外,我们检测到载有 miR-150-5p 抑制剂的纳米颗粒减轻了 NPC 体外衰老,并且在体内持续 3 个月以上。NPC 微环境改善了 miRNA 的内体/溶酶体逃逸,极大地抑制了衰老相关因子的分泌和随后的 NPC 退变。重要的是,通过靶向 FBXW11 并抑制 TAK1 泛素化,载有 miR-150-5p 抑制剂的纳米颗粒减弱了针穿刺诱导的小鼠模型中的 IDD,从而下调 NF-kB 信号通路活性。
NPC 靶向纳米颗粒递送 miR-150-5p 显示出良好的治疗效果和安全性,可能成为 IDD 的一种有前途的治疗方法。