Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Center, Medical University of Vienna, Vienna, Austria.
Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, A-1090, Austria.
Cancer Imaging. 2024 May 27;24(1):67. doi: 10.1186/s40644-024-00704-9.
With the application of high-resolution 3D 7 Tesla Magnetic Resonance Spectroscopy Imaging (MRSI) in high-grade gliomas, we previously identified intratumoral metabolic heterogeneities. In this study, we evaluated the potential of 3D 7 T-MRSI for the preoperative noninvasive classification of glioma grade and isocitrate dehydrogenase (IDH) status. We demonstrated that IDH mutation and glioma grade are detectable by ultra-high field (UHF) MRI. This technique might potentially optimize the perioperative management of glioma patients.
We prospectively included 36 patients with WHO 2021 grade 2-4 gliomas (20 IDH mutated, 16 IDH wildtype). Our 7 T 3D MRSI sequence provided high-resolution metabolic maps (e.g., choline, creatine, glutamine, and glycine) of these patients' brains. We employed multivariate random forest and support vector machine models to voxels within a tumor segmentation, for classification of glioma grade and IDH mutation status.
Random forest analysis yielded an area under the curve (AUC) of 0.86 for multivariate IDH classification based on metabolic ratios. We distinguished high- and low-grade tumors by total choline (tCho) / total N-acetyl-aspartate (tNAA) ratio difference, yielding an AUC of 0.99. Tumor categorization based on other measured metabolic ratios provided comparable accuracy.
We successfully classified IDH mutation status and high- versus low-grade gliomas preoperatively based on 7 T MRSI and clinical tumor segmentation. With this approach, we demonstrated imaging based tumor marker predictions at least as accurate as comparable studies, highlighting the potential application of MRSI for pre-operative tumor classifications.
随着高分辨率 3D 7 特斯拉磁共振光谱成像(MRSI)在高级别胶质瘤中的应用,我们之前已经确定了肿瘤内代谢异质性。在这项研究中,我们评估了 3D 7T-MRSI 用于术前无创分类胶质瘤分级和异柠檬酸脱氢酶(IDH)状态的潜力。我们证明 IDH 突变和胶质瘤分级可以通过超高场(UHF)MRI 检测到。这项技术有可能优化胶质瘤患者的围手术期管理。
我们前瞻性地纳入了 36 名 2021 年 WHO 2 级-4 级胶质瘤患者(20 名 IDH 突变,16 名 IDH 野生型)。我们的 7T 3D MRSI 序列提供了这些患者大脑的高分辨率代谢图谱(例如胆碱、肌酸、谷氨酰胺和甘氨酸)。我们采用多元随机森林和支持向量机模型对肿瘤分割内的体素进行分类,以分类胶质瘤分级和 IDH 突变状态。
随机森林分析显示,基于代谢比的多元 IDH 分类的曲线下面积(AUC)为 0.86。我们通过总胆碱(tCho)/总 N-乙酰天冬氨酸(tNAA)比值差异区分高级和低级肿瘤,AUC 为 0.99。基于其他测量代谢比的肿瘤分类提供了相当的准确性。
我们成功地基于 7T MRSI 和临床肿瘤分割术前对 IDH 突变状态和高级别与低级别胶质瘤进行分类。通过这种方法,我们证明了至少与类似研究一样准确的基于成像的肿瘤标志物预测,突出了 MRSI 在术前肿瘤分类中的潜在应用。