Cambridge Clinical Trials Unit Cancer Theme, University of Cambridge, Cambridge, UK.
Cambridge Precision Breast Cancer Institute, University of Cambridge, Cambridge, UK.
Stat Med. 2024 Jul 20;43(16):3062-3072. doi: 10.1002/sim.10121. Epub 2024 May 27.
This article is concerned with sample size determination methodology for prediction models. We propose to combine the individual calculations via learning-type curves. We suggest two distinct ways of doing so, a deterministic skeleton of a learning curve and a Gaussian process centered upon its deterministic counterpart. We employ several learning algorithms for modeling the primary endpoint and distinct measures for trial efficacy. We find that the performance may vary with the sample size, but borrowing information across sample size universally improves the performance of such calculations. The Gaussian process-based learning curve appears more robust and statistically efficient, while computational efficiency is comparable. We suggest that anchoring against historical evidence when extrapolating sample sizes should be adopted when such data are available. The methods are illustrated on binary and survival endpoints.
这篇文章主要探讨了预测模型的样本量确定方法。我们建议通过学习型曲线来组合个体计算结果。我们提出了两种不同的方法,一种是学习曲线的确定性骨架,另一种是基于其确定性对应物的高斯过程。我们使用了几种学习算法来模拟主要终点和不同的试验疗效衡量标准。我们发现,性能可能会随样本量而变化,但在不同样本量之间借用信息普遍可以提高这些计算的性能。基于高斯过程的学习曲线似乎更稳健且统计效率更高,而计算效率则相当。我们建议,当有可用的历史数据时,在进行样本量外推时应该采用基于历史证据的方法。该方法在二项和生存终点上进行了说明。