Suppr超能文献

二维TiCT MXene膜作为纳米流体渗透发电装置

Two-Dimensional TiCT MXene Membranes as Nanofluidic Osmotic Power Generators.

作者信息

Hong Seunghyun, Ming Fangwang, Shi Yusuf, Li Renyuan, Kim In S, Tang Chuyang Y, Alshareef Husam N, Wang Peng

机构信息

Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology (GIST) , 123 Cheomdangwagi-ro , Buk-gu, Gwangju 61005 , South Korea.

Department of Civil Engineering , The University of Hong Kong , Pokfulam , Hong Kong 999077.

出版信息

ACS Nano. 2019 Aug 27;13(8):8917-8925. doi: 10.1021/acsnano.9b02579. Epub 2019 Jul 17.

Abstract

Salinity-gradient is emerging as one of the promising renewable energy sources but its energy conversion is severely limited by unsatisfactory performance of available semipermeable membranes. Recently, nanoconfined channels, as osmotic conduits, have shown superior energy conversion performance to conventional technologies. Here, ion selective nanochannels in lamellar TiCT MXene membranes are reported for efficient osmotic power harvesting. These subnanometer channels in the TiCT membranes enable cation-selective passage, assisted with tailored surface terminal groups, under salinity gradient. A record-high output power density of 21 W·m at room temperature with an energy conversion efficiency of up to 40.6% is achieved by controlled surface charges at a 1000-fold salinity gradient. In addition, due to thermal regulation of surface charges and ionic mobility, the MXene membrane produces a large thermal enhancement at 331 K, yielding a power density of up to 54 W·m. The MXene lamellar structure, coupled with its scalability and chemical tunability, may be an important platform for high-performance osmotic power generators.

摘要

盐度梯度正成为一种有前景的可再生能源,但现有的半透膜性能不尽人意,严重限制了其能量转换。最近,作为渗透通道的纳米受限通道已显示出比传统技术更优越的能量转换性能。在此,报道了层状TiCT MXene膜中的离子选择性纳米通道用于高效收集渗透能。在盐度梯度下,TiCT膜中的这些亚纳米通道在定制的表面端基辅助下实现阳离子选择性通过。通过在1000倍盐度梯度下控制表面电荷,在室温下实现了创纪录的21 W·m的高输出功率密度,能量转换效率高达40.6%。此外,由于表面电荷和离子迁移率的热调节,MXene膜在331 K时产生了很大的热增强,功率密度高达54 W·m。MXene层状结构及其可扩展性和化学可调性,可能成为高性能渗透能发电机的重要平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验