Suppr超能文献

高价锡掺杂多孔NaV(PO)/C纳米结构的定制:一种用于钠离子电池的超高速率阴极。

Tailoring of High-Valent Sn-Doped Porous NaV(PO)/C Nanoarchitechtonics: An Ultra High-Rate Cathode for Sodium-Ion Batteries.

作者信息

Mukkattu Kuniyil Nikhil Chandran, Robin Ranjan, Kumarasamy Rajesh Kumar, Nishanthi S T, Sathish Marappan

机构信息

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.

Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, Tamil Nadu, India.

出版信息

ACS Appl Mater Interfaces. 2024 Jun 5;16(22):28599-28612. doi: 10.1021/acsami.4c04244. Epub 2024 May 28.

Abstract

NASICON structured NaV(PO) (NVP) has captured enormous attention as a potential cathode for next-generation sodium-ion batteries (SIBs), owing to its sturdy crystal structure and high theoretical capacity. Nonetheless, its poor intrinsic electronic conductivity has led to inferior electrochemical performance in terms of rate capability and long cycling performance. To address this problem, a combined strategy is adopted, such as (1) carbon coating and (2) high valent Sn ion doping in the lattice site of vanadium in the NVP cathode. Carbon coating can effectively enhance the surface electronic conductivity, wherein high-valent Sn improves the bulk intrinsic electronic conductivity of the materials. Moreover, Sn is a well-known alloying/dealloying type anode for SIBs; thus, doping of such metal in cathode materials will assume the role of structure stabilizing pillars and establishing high-performing cathode materials. Herein, NaVSn(PO)/C (denoted as Sn()-NVP/C, where = 0.00, 0.03, 0.05, 0.07, 0.1) were synthesized via sol-gel route, followed by calcination at 800 °C. XRD, Raman, XPS, and electron microscopy data confirmed the high purity of the synthesized cathode. The optimized Sn(0.07)-NVP/C exhibited excellent electrochemical performance in terms of high rate capability and long cycling performance, a high appreciable capacity of 98 mAh g with capacity retention of 85% after 500 cycles. Similarly, at a high current of 20C, it is still able to deliver a stable capacity of 76 mAh g with 85% capacity retention after 3000 cycles. The rate capability study indicates the high current tolerance of Sn(0.07)-NVP/C up to 70 C with a capacity delivery of 55 mAh g. It is worth mentioning that CV and EIS analysis for Sn(0.07)-NVP/C cathode displayed minimum voltage polarization and enhanced diffusion coefficient. Moreover, DFT calculation also proved that the electronic and ionic conductivity of NVP is promoted by Sn doping. Hence, the present results demonstrated that Sn(0.07)-NVP/C is considered a promising cathode for sodium-ion battery application.

摘要

NASICON结构的NaV(PO)(NVP)因其坚固的晶体结构和高理论容量,作为下一代钠离子电池(SIBs)的潜在阴极受到了广泛关注。然而,其固有的电子导电性较差,导致在倍率性能和长循环性能方面的电化学性能不佳。为了解决这个问题,采用了一种组合策略,例如(1)碳包覆和(2)在NVP阴极中钒的晶格位置进行高价Sn离子掺杂。碳包覆可以有效地提高表面电子导电性,其中高价Sn提高了材料的体相固有电子导电性。此外,Sn是一种众所周知的用于SIBs的合金化/脱合金化型阳极;因此,在阴极材料中掺杂这种金属将起到结构稳定支柱的作用,并建立高性能的阴极材料。在此,通过溶胶-凝胶法合成了NaVSn(PO)/C(表示为Sn()-NVP/C,其中 = 0.00、0.03、0.05、0.07、0.1),随后在800℃下煅烧。XRD、拉曼、XPS和电子显微镜数据证实了合成阴极的高纯度。优化后的Sn(0.07)-NVP/C在高倍率性能和长循环性能方面表现出优异的电化学性能,在500次循环后具有98 mAh g的高可观容量,容量保持率为85%。同样,在20C的高电流下,它在3000次循环后仍能提供76 mAh g的稳定容量,容量保持率为85%。倍率性能研究表明,Sn(0.07)-NVP/C在高达70 C的高电流下具有高耐受性,容量输出为55 mAh g。值得一提的是,对Sn(0.07)-NVP/C阴极的CV和EIS分析显示出最小的电压极化和增强的扩散系数。此外,DFT计算也证明了Sn掺杂促进了NVP的电子和离子导电性。因此,目前的结果表明,Sn(0.07)-NVP/C被认为是一种有前途的钠离子电池应用阴极。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验