Zhao Lijiang, Liu Xinghua, Li Jinsong, Diao Xungang, Zhang Junying
School of Physics, Beihang University, Beijing 100191, China.
School of Energy and Power Engineering, Beihang University, Beijing 100191, China.
Nanomaterials (Basel). 2023 Jan 21;13(3):446. doi: 10.3390/nano13030446.
Sodium-ion batteries (SIBs) are essential for large-scale energy storage attributed to the high abundance of sodium. Polyanion NaV(PO) (NVP) is a dominant cathode candidate for SIBs because of its high-voltage and sodium superionic conductor (NASICON) framework. However, the electrochemical performance of NVP is hindered by the inherently poor electronic conductivity, especially for extreme fast charging and long-duration cycling. Herein, we develop a facile one-step in-situ polycondensation method to synthesize the three-dimensional (3D) NaV(PO)/holey-carbon frameworks (NVP@C) by using melamine as carbon source. In this architecture, NVP crystals intergrown with the 3D holey-carbon frameworks provide rapid transport pathways for ion/electron transmission to increase the ultrahigh rate ability and cycle capability. Consequently, the NVP@C cathode possesses a high reversible capacity of 113.9 mAh g at 100 mA g and delivers an outstanding high-rate capability of 75.3 mAh g at 6000 mA g. Moreover, it shows that the NVP@C cathode is able to display a volumetric energy density of 54 Wh L at 6000 mA g (31 Wh L for NVP bulk), as well as excellent cycling performance of 65.4 mAh g after 1000 cycles at 2000 mA g. Furthermore, the NVP@C exhibits remarkable reversible capabilities of 81.9 mAh g at a current density of 100 mA g and 60.2 mAh g at 1000 mA g even at a low temperature of -15 °C. The structure of porous carbon frameworks combined with single crystal materials by in-situ polycondensation offers general guidelines for the design of sodium, lithium and potassium energy storage materials.
钠离子电池(SIBs)因其钠资源丰富,对大规模储能至关重要。聚阴离子NaV(PO)(NVP)因其高电压和钠超离子导体(NASICON)框架,是SIBs的主要正极候选材料。然而,NVP的电化学性能受到其固有电子导电性差的阻碍,特别是在极快速充电和长循环寿命方面。在此,我们开发了一种简便的一步原位缩聚方法,以三聚氰胺为碳源合成三维(3D)NaV(PO)/多孔碳框架(NVP@C)。在这种结构中,与3D多孔碳框架共生的NVP晶体为离子/电子传输提供了快速通道,以提高超高倍率性能和循环性能。因此,NVP@C正极在100 mA g时具有113.9 mAh g的高可逆容量,在6000 mA g时具有75.3 mAh g的出色高倍率性能。此外,结果表明,NVP@C正极在6000 mA g时能够展现出54 Wh L的体积能量密度(NVP块体为31 Wh L),以及在2000 mA g下循环1000次后65.4 mAh g的优异循环性能。此外,即使在-15°C的低温下,NVP@C在100 mA g的电流密度下仍具有81.9 mAh g的显著可逆容量,在1000 mA g时为60.2 mAh g。通过原位缩聚将多孔碳框架与单晶材料相结合的结构为钠、锂和钾储能材料的设计提供了通用指导方针。