Suppr超能文献

药用植物作为治疗新冠症状的选择性抗体的结构与功能表征

Structural and Functional Characterization of Medicinal Plants as Selective Antibodies towards Therapy of COVID-19 Symptoms.

作者信息

Mollaamin Fatemeh

机构信息

Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu 37150, Turkey.

出版信息

Antibodies (Basel). 2024 May 7;13(2):38. doi: 10.3390/antib13020038.

Abstract

Considering the COVID-19 pandemic, this research aims to investigate some herbs as probable therapies for this disease. (), , (), , , and , including some principal chemical compounds of achillin, alkannin, cuminaldehyde, dillapiole, estragole, and fenchone have been selected. The possible roles of these medicinal plants in COVID-19 treatment have been investigated through quantum sensing methods. The formation of hydrogen bonding between the principal substances selected in anti-COVID natural drugs and Tyr-Met-His (the database amino acids fragment), as the active area of the COVID protein, has been evaluated. The physical and chemical attributes of nuclear magnetic resonance, vibrational frequency, the highest occupied molecular orbital energy and the lowest unoccupied molecular orbital energy, partial charges, and spin density have been investigated using the DFT/TD-DFT method and 6-311+G (2d,p) basis set by the Gaussian 16 revision C.01 program toward the industry of drug design. This research has exhibited that there is relative agreement among the results that these medicinal plants could be efficient against COVID-19 symptoms.

摘要

考虑到新冠疫情,本研究旨在探究某些草药作为该疾病可能的治疗方法。(),(),(),(),()以及(),包括阿奇灵、紫朱草素、枯茗醛、莳萝脑、草蒿脑和小茴香酮的一些主要化学成分已被选定。这些药用植物在新冠治疗中的潜在作用已通过量子传感方法进行了研究。已评估了抗新冠天然药物中所选主要物质与作为新冠病毒蛋白活性区域的Tyr-Met-His(数据库氨基酸片段)之间氢键的形成情况。使用DFT/TD-DFT方法和高斯16修订版C.01程序中的6-311+G(2d,p)基组,针对药物设计行业研究了核磁共振、振动频率、最高占据分子轨道能量和最低未占据分子轨道能量、部分电荷以及自旋密度的物理和化学属性。本研究表明,这些药用植物可能对新冠症状有效这一结果之间存在相对一致性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b8/11130808/e7da8d8127c8/antibodies-13-00038-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验