Gharakhanyan Vahe, Wirth Luke J, Garrido Torres Jose A, Eisenberg Ethan, Wang Ting, Trinkle Dallas R, Chatterjee Snigdhansu, Urban Alexander
Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA.
Columbia Electrochemical Energy Center, Columbia University, New York, New York 10027, USA.
J Chem Phys. 2024 May 28;160(20). doi: 10.1063/5.0207033.
The melting temperature is important for materials design because of its relationship with thermal stability, synthesis, and processing conditions. Current empirical and computational melting point estimation techniques are limited in scope, computational feasibility, or interpretability. We report the development of a machine learning methodology for predicting melting temperatures of binary ionic solid materials. We evaluated different machine-learning models trained on a dataset of the melting points of 476 non-metallic crystalline binary compounds using materials embeddings constructed from elemental properties and density-functional theory calculations as model inputs. A direct supervised-learning approach yields a mean absolute error of around 180 K but suffers from low interpretability. We find that the fidelity of predictions can further be improved by introducing an additional unsupervised-learning step that first classifies the materials before the melting-point regression. Not only does this two-step model exhibit improved accuracy, but the approach also provides a level of interpretability with insights into feature importance and different types of melting that depend on the specific atomic bonding inside a material. Motivated by this finding, we used a symbolic learning approach to find interpretable physical models for the melting temperature, which recovered the best-performing features from both prior models and provided additional interpretability.
熔点对于材料设计很重要,因为它与热稳定性、合成及加工条件相关。当前的经验性和计算性熔点估算技术在范围、计算可行性或可解释性方面存在局限。我们报告了一种用于预测二元离子固体材料熔点的机器学习方法的开发情况。我们使用由元素性质和密度泛函理论计算构建的材料嵌入作为模型输入,评估了在476种非金属晶体二元化合物熔点数据集上训练的不同机器学习模型。一种直接的监督学习方法产生的平均绝对误差约为180 K,但可解释性较低。我们发现,通过引入一个额外的无监督学习步骤,即在熔点回归之前先对材料进行分类,可以进一步提高预测的准确性。这种两步模型不仅表现出更高的准确性,而且该方法还提供了一定程度的可解释性,能深入了解特征重要性以及取决于材料内部特定原子键合的不同类型的熔化。受这一发现的启发,我们使用符号学习方法来寻找熔点的可解释物理模型,该模型从先前的两个模型中恢复了表现最佳的特征,并提供了额外的可解释性。