Low Kaycee, Kobayashi Rika, Izgorodina Ekaterina I
Monash Computational Chemistry Group, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia.
ANU Supercomputer Facility, Leonard Huxley Building 56, Mills Road, Canberra, ACT 2601, Australia.
J Chem Phys. 2020 Sep 14;153(10):104101. doi: 10.1063/5.0016289.
The characterization of an ionic liquid's properties based on structural information is a longstanding goal of computational chemistry, which has received much focus from ab initio and molecular dynamics calculations. This work examines kernel ridge regression models built from an experimental dataset of 2212 ionic liquid melting points consisting of diverse ion types. Structural descriptors, which have been shown to predict quantum mechanical properties of small neutral molecules within chemical accuracy, benefit from the addition of first-principles data related to the target property (molecular orbital energy, charge density profile, and interaction energy based on the geometry of a single ion pair) when predicting the melting point of ionic liquids. Out of the two chosen structural descriptors, ECFP4 circular fingerprints and the Coulomb matrix, the addition of molecular orbital energies and all quantum mechanical data to each descriptor, respectively, increases the accuracy of surrogate models for melting point prediction compared to using the structural descriptors alone. The best model, based on ECFP4 and molecular orbital energies, predicts ionic liquid melting points with an average mean absolute error of 29 K and, unlike group contribution methods, which have achieved similar results, is applicable to any type of ionic liquid.
基于结构信息对离子液体性质进行表征是计算化学的一个长期目标,这一目标已受到从头算和分子动力学计算的广泛关注。这项工作研究了基于包含多种离子类型的2212种离子液体熔点的实验数据集构建的核岭回归模型。结构描述符已被证明能够在化学精度范围内预测小分子的量子力学性质,在预测离子液体熔点时,若加入与目标性质相关的第一性原理数据(分子轨道能量、电荷密度分布以及基于单个离子对几何结构的相互作用能),则会从中受益。在所选的两个结构描述符ECFP4圆形指纹和库仑矩阵中,分别向每个描述符添加分子轨道能量和所有量子力学数据,与仅使用结构描述符相比,提高了熔点预测替代模型的准确性。基于ECFP4和分子轨道能量的最佳模型预测离子液体熔点的平均平均绝对误差为29 K,并且与已取得类似结果的基团贡献方法不同,该模型适用于任何类型的离子液体。