Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
Institute of Human Genetics, UMR9002 CNRS, University of Montpellier, Montpellier, France.
PLoS Biol. 2024 May 28;22(5):e3002629. doi: 10.1371/journal.pbio.3002629. eCollection 2024 May.
Despite significant progress in understanding epigenetic reprogramming of cells, the mechanistic basis of "organ reprogramming" by (epi-)gene-environment interactions remained largely obscure. Here, we use the ether-induced haltere-to-wing transformations in Drosophila as a model for epigenetic "reprogramming" at the whole organism level. Our findings support a mechanistic chain of events explaining why and how brief embryonic exposure to ether leads to haltere-to-wing transformations manifested at the larval stage and on. We show that ether interferes with protein integrity in the egg, leading to altered deployment of Hsp90 and widespread repression of Trithorax-mediated establishment of active H3K4me3 chromatin marks throughout the genome. Despite this global reduction, Ubx targets and wing development genes preferentially retain higher levels of H3K4me3 that predispose these genes for later up-regulation in the larval haltere disc, hence the wing-like outcome. Consistent with compromised protein integrity during the exposure, the penetrance of bithorax transformations increases by genetic or chemical reduction of Hsp90 function. Moreover, joint reduction in Hsp90 and trx gene dosage can cause bithorax transformations without exposure to ether, supporting an underlying epistasis between Hsp90 and trx loss-of-functions. These findings implicate environmental disruption of protein integrity at the onset of histone methylation with altered epigenetic regulation of developmental patterning genes. The emerging picture provides a unique example wherein the alleviation of the Hsp90 "capacitor function" by the environment drives a morphogenetic shift towards an ancestral-like body plan. The morphogenetic impact of chaperone response during a major setup of epigenetic patterns may be a general scheme for organ transformation by environmental cues.
尽管在理解细胞的表观遗传重编程方面取得了重大进展,但(表观)基因-环境相互作用“器官重编程”的机制基础在很大程度上仍不清楚。在这里,我们使用果蝇中诱导的平衡棒到翅膀的转变作为表观遗传“重编程”的整体生物体水平的模型。我们的研究结果支持了一个解释为什么和如何在胚胎短暂暴露于醚后导致平衡棒到翅膀的转变的机制链事件,这些转变在幼虫阶段和之后表现出来。我们表明,醚会干扰卵子中的蛋白质完整性,导致 Hsp90 的部署发生改变,并广泛抑制 Trithorax 介导的整个基因组中活性 H3K4me3 染色质标记的建立。尽管存在这种全局减少,但 Ubx 靶标和翅膀发育基因优先保留更高水平的 H3K4me3,使这些基因更容易在幼虫平衡棒盘中后期上调,从而产生类似翅膀的结果。与暴露期间蛋白质完整性受损一致,通过遗传或化学降低 Hsp90 功能,双胸转变的穿透率增加。此外,Hsp90 和 trx 基因剂量的联合减少可以导致双胸转变,而无需暴露于醚,这支持了 Hsp90 和 trx 功能丧失之间的潜在上位性。这些发现表明,环境中断了组蛋白甲基化的起始时的蛋白质完整性,并改变了发育模式基因的表观遗传调控。新兴的图景提供了一个独特的例子,即环境缓解 Hsp90“帽功能”驱动了向祖先样身体计划的形态发生转变。在表观遗传模式的主要建立过程中,伴侣蛋白反应的形态发生影响可能是环境线索引起器官转化的一般方案。
Proc Natl Acad Sci U S A. 2009-1-27
PLoS Genet. 2016-2-29
Dev Biol. 2007-2-15
Nat Rev Mol Cell Biol. 2014-5
MicroPubl Biol. 2023-8-14
Environ Pollut. 2023-8-1
Integr Org Biol. 2021-12-2
Development. 2020-7-17
Birth Defects Res. 2020-10
Evol Med Public Health. 2018-2-5
Interface Focus. 2017-10-6