Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, 730000, P.R. China.
Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA.
Adv Healthc Mater. 2024 Sep;13(23):e2401093. doi: 10.1002/adhm.202401093. Epub 2024 Jun 4.
Repairing larger defects (>5 mm) in peripheral nerve injuries (PNIs) remains a significant challenge when using traditional artificial nerve guidance conduits (NGCs). A novel approach that combines 4D printing technology with poly(L-lactide-co-trimethylene carbonate) (PLATMC) and TiCT MXene nanosheets is proposed, thereby imparting shape memory properties to the NGCs. Upon body temperature activation, the printed sheet-like structure can quickly self-roll into a conduit-like structure, enabling optimal wrapping around nerve stumps. This design enhances nerve fixation and simplifies surgical procedures. Moreover, the integration of microchannel expertly crafted through 4D printing, along with the incorporation of MXene nanosheets, introduces electrical conductivity. This feature facilitates the guided and directional migration of nerve cells, rapidly accelerating the healing of the PNI. By leveraging these advanced technologies, the developed NGCs demonstrate remarkable potential in promoting peripheral nerve regeneration, leading to substantial improvements in muscle morphology and restored sciatic nerve function, comparable to outcomes achieved through autogenous nerve transplantation.
在使用传统的人工神经引导管(NGC)修复周围神经损伤(PNI)中的较大缺陷(>5 毫米)时,仍然是一个重大挑战。本文提出了一种将 4D 打印技术与聚(L-丙交酯-共-三亚甲基碳酸酯)(PLATMC)和 TiCT MXene 纳米片相结合的新方法,从而赋予 NGC 形状记忆性能。在体温激活后,打印出的片状结构可以迅速自行卷成导管状结构,从而实现最佳的神经残端包裹。该设计增强了神经固定并简化了手术过程。此外,通过 4D 打印巧妙地集成微通道,并结合 MXene 纳米片,引入了导电性。这一特性有助于引导和定向迁移神经细胞,迅速加速 PNI 的愈合。通过利用这些先进技术,所开发的 NGC 在促进周围神经再生方面表现出巨大的潜力,导致肌肉形态得到显著改善,并恢复了坐骨神经功能,与自体神经移植的结果相当。