Institute of Biophotonics, National Yang-Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.
Institute of Biophotonics, National Yang-Ming Chiao Tung University, Taipei, Taiwan.
Radiother Oncol. 2024 Aug;197:110344. doi: 10.1016/j.radonc.2024.110344. Epub 2024 May 26.
Accurate segmentation of lung tumors on chest computed tomography (CT) scans is crucial for effective diagnosis and treatment planning. Deep Learning (DL) has emerged as a promising tool in medical imaging, particularly for lung cancer segmentation. However, its efficacy across different clinical settings and tumor stages remains variable.
We conducted a comprehensive search of PubMed, Embase, and Web of Science until November 7, 2023. We assessed the quality of these studies by using the Checklist for Artificial Intelligence in Medical Imaging and the Quality Assessment of Diagnostic Accuracy Studies-2 tools. This analysis included data from various clinical settings and stages of lung cancer. Key performance metrics, such as the Dice similarity coefficient, were pooled, and factors affecting algorithm performance, such as clinical setting, algorithm type, and image processing techniques, were examined.
Our analysis of 37 studies revealed a pooled Dice score of 79 % (95 % CI: 76 %-83 %), indicating moderate accuracy. Radiotherapy studies had a slightly lower score of 78 % (95 % CI: 74 %-82 %). A temporal increase was noted, with recent studies (post-2022) showing improvement from 75 % (95 % CI: 70 %-81 %). to 82 % (95 % CI: 81 %-84 %). Key factors affecting performance included algorithm type, resolution adjustment, and image cropping. QUADAS-2 assessments identified ambiguous risks in 78 % of studies due to data interval omissions and concerns about generalizability in 8 % due to nodule size exclusions, and CLAIM criteria highlighted areas for improvement, with an average score of 27.24 out of 42.
This meta-analysis demonstrates DL algorithms' promising but varied efficacy in lung cancer segmentation, particularly higher efficacy noted in early stages. The results highlight the critical need for continued development of tailored DL models to improve segmentation accuracy across diverse clinical settings, especially in advanced cancer stages with greater challenges. As recent studies demonstrate, ongoing advancements in algorithmic approaches are crucial for future applications.
在胸部计算机断层扫描(CT)扫描上准确分割肺肿瘤对于有效的诊断和治疗计划至关重要。深度学习(DL)已成为医学成像领域有前途的工具,特别是在肺癌分割方面。然而,它在不同临床环境和肿瘤阶段的疗效仍然各不相同。
我们对 PubMed、Embase 和 Web of Science 进行了全面检索,截至 2023 年 11 月 7 日。我们使用人工智能在医学成像中的检查表和诊断准确性研究的质量评估-2 工具来评估这些研究的质量。该分析包括来自不同临床环境和肺癌阶段的数据。主要性能指标,如骰子相似系数,被汇总,检查影响算法性能的因素,如临床环境、算法类型和图像处理技术。
我们对 37 项研究的分析显示,汇总的骰子得分为 79%(95%置信区间:76%-83%),表明准确性中等。放射治疗研究的得分略低,为 78%(95%置信区间:74%-82%)。注意到时间上的增加,最近的研究(2022 年后)显示出从 75%(95%置信区间:70%-81%)到 82%(95%置信区间:81%-84%)的改善。影响性能的关键因素包括算法类型、分辨率调整和图像裁剪。QUADAS-2 评估发现,由于数据间隔遗漏,78%的研究存在模糊风险,由于结节大小排除,8%的研究存在普遍性关注,CLAIM 标准突出了改进的领域,平均得分为 42 分中的 27.24 分。
这项荟萃分析表明,DL 算法在肺癌分割方面具有有前途但效果各异的疗效,特别是在早期阶段效果更高。结果突出表明,迫切需要继续开发针对特定 DL 模型,以提高在不同临床环境中的分割准确性,特别是在具有更大挑战的晚期癌症阶段。正如最近的研究所示,算法方法的持续进展对于未来的应用至关重要。