State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
Nat Commun. 2024 May 28;15(1):4519. doi: 10.1038/s41467-024-48446-3.
Protein ubiquitination regulates a wide range of cellular processes. The degree of protein ubiquitination is determined by the delicate balance between ubiquitin ligase (E3)-mediated ubiquitination and deubiquitinase (DUB)-mediated deubiquitination. In comparison to the E3-substrate interactions, the DUB-substrate interactions (DSIs) remain insufficiently investigated. To address this challenge, we introduce a protein sequence-based ab initio method, TransDSI, which transfers proteome-scale evolutionary information to predict unknown DSIs despite inadequate training datasets. An explainable module is integrated to suggest the critical protein regions for DSIs while predicting DSIs. TransDSI outperforms multiple machine learning strategies against both cross-validation and independent test. Two predicted DUBs (USP11 and USP20) for FOXP3 are validated by "wet lab" experiments, along with two predicted substrates (AR and p53) for USP22. TransDSI provides new functional perspective on proteins by identifying regulatory DSIs, and offers clues for potential tumor drug target discovery and precision drug application.
蛋白质泛素化调节着广泛的细胞过程。蛋白质泛素化的程度取决于泛素连接酶(E3)介导的泛素化和去泛素化酶(DUB)介导的去泛素化之间的微妙平衡。与 E3-底物相互作用相比,DUB-底物相互作用(DSI)的研究仍不够充分。为了解决这一挑战,我们引入了一种基于蛋白质序列的从头预测方法 TransDSI,该方法将蛋白质组尺度的进化信息转移到预测未知的 DSI 中,尽管训练数据集不足。在预测 DSI 的同时,集成了一个可解释的模块来提示 DSI 的关键蛋白质区域。TransDSI 在交叉验证和独立测试中均优于多种机器学习策略。通过“湿实验室”实验验证了针对 FOXP3 的两个预测 DUB(USP11 和 USP20),以及针对 USP22 的两个预测底物(AR 和 p53)。TransDSI 通过识别调控 DSI 为蛋白质提供了新的功能视角,并为潜在的肿瘤药物靶标发现和精准药物应用提供了线索。