Suppr超能文献

利用离子-偶极相互作用实现贫水溶剂化化学:在水系锌离子电池中实现高稳定性锌负极

Harnessing Ion-Dipole Interactions for Water-Lean Solvation Chemistry: Achieving High-Stability Zn Anodes in Aqueous Zinc-Ion Batteries.

作者信息

Wu Mingqiang, Sun Yilun, Yang Zimin, Deng Siting, Tong Hao, Nie Xinbin, Su Yifan, Li Jianwei, Chai Guoliang

机构信息

Department State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China.

College of Chemistry, Fuzhou University, Fuzhou, 350108, China.

出版信息

Angew Chem Int Ed Engl. 2024 Oct 21;63(43):e202407439. doi: 10.1002/anie.202407439. Epub 2024 Jul 11.

Abstract

The reversibility and stability of aqueous zinc-ion batteries (AZIBs) are largely limited by water-induced interfacial parasitic reactions. Here, dimethyl(3,3-difluoro-2-oxoheptyl)phosphonate (DP) is introduced to tailor primary solvation sheath and inner-Helmholtz configurations for robust zinc anode. Informed by theoretical guidance on solvation process, DP with high permanent dipole moments can effectively substitute the coordination of HO with charge carriers through relatively strong ion-dipolar interactions, resulting in a water-lean environment of solvated Zn. Thus, interfacial side reactions can be suppressed through a shielding effect. Meanwhile, lone-pair electrons of oxygen and fluorinated features of DP also reinforce the interfacial affinity of metallic zinc, associated with exclusion of neighboring water to facilitate reversible zinc planarized deposition. Thus, these merits endow the Zn anode with a high-stability performance exceeds 3800 hours at 0.5 mA cm and 0.5 mAh cm for Zn||Zn batteries and a high average Coulombic efficiency of 99.8 % at 4 mA cm and 1 mAh cm for Zn||Cu batteries. Benefiting from the stable zinc anode, the Zn||NHVO cell maintains 80.3 % of initial discharge capacity after 3000 cycles at 5 A g and exhibits a high retention rate of 99.4 % against to the initial capacity during the self-discharge characterizations.

摘要

水系锌离子电池(AZIBs)的可逆性和稳定性在很大程度上受到水引发的界面寄生反应的限制。在此,引入二甲基(3,3-二氟-2-氧代庚基)膦酸酯(DP)来调整初级溶剂化鞘层和内亥姆霍兹结构,以实现坚固的锌负极。基于溶剂化过程的理论指导,具有高永久偶极矩的DP可以通过相对较强的离子-偶极相互作用有效地取代HO与电荷载体的配位,从而形成贫水的溶剂化锌环境。因此,可以通过屏蔽效应抑制界面副反应。同时,DP的氧孤对电子和氟化特性也增强了金属锌的界面亲和力,伴随着排除相邻的水以促进锌的可逆平面化沉积。因此,这些优点赋予锌负极在0.5 mA cm和0.5 mAh cm下用于Zn||Zn电池时超过3800小时的高稳定性性能,以及在4 mA cm和1 mAh cm下用于Zn||Cu电池时99.8%的高平均库仑效率。受益于稳定的锌负极,Zn||NHVO电池在5 A g下循环3000次后保持初始放电容量的80.3%,并且在自放电表征期间相对于初始容量表现出99.4%的高保留率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验