Suppr超能文献

赤藓糖醇作为用于高度可逆锌阳极的糖类多功能电解质添加剂

Erythritol as a Saccharide Multifunctional Electrolyte Additive for Highly Reversible Zinc Anode.

作者信息

Li Linjie, Guo Zongwei, Li Shiteng, Cao Piting, Du Weidong, Feng Deshi, Wei Wenhui, Xu Fengzhao, Ye Chuangen, Yang Mingzhi, Zhang Jing, Zhang Xingshuang, Li Yong

机构信息

Key Laboratory for High Strength Lightweight Metallic Materials of Shandong Province (HM), Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.

State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

出版信息

Nanomaterials (Basel). 2024 Apr 8;14(7):644. doi: 10.3390/nano14070644.

Abstract

Dendrite formation and water-triggered side reactions on the surface of Zn metal anodes severely restrict the commercial viability of aqueous zinc-ion batteries (AZIBs). In this work, we introduce erythritol (Et) as an electrolyte additive to enhance the reversibility of zinc anodes, given its cost-effectiveness, mature technology, and extensive utilization in various domains such as food, medicine, and other industries. By combining multiscale theoretical simulation and experimental characterization, it was demonstrated that Et molecules can partially replace the coordination HO molecules to reshape the Zn solvation sheath and destroy the hydrogen bond network of the aqueous electrolyte. More importantly, Et molecules tend to adsorb on the zinc anode surface, simultaneously inhibit water-triggered side reactions by isolating water and promote uniform and dense deposition by accelerating the Zn diffusion and regulating the nucleation size of the Zn grain. Thanks to this synergistic mechanism, the Zn anode can achieve a cycle life of more than 3900 h at 1 mA cm and an average Coulombic efficiency of 99.77%. Coupling with δ-MnO cathodes, the full battery delivers a high specific capacity of 228.1 mAh g with a capacity retention of 76% over 1000 cycles at 1 A g.

摘要

锌金属阳极表面的枝晶形成和水引发的副反应严重限制了水系锌离子电池(AZIBs)的商业可行性。在这项工作中,我们引入赤藓糖醇(Et)作为电解质添加剂,以提高锌阳极的可逆性,这是考虑到其成本效益、成熟的技术以及在食品、医药和其他行业等各个领域的广泛应用。通过结合多尺度理论模拟和实验表征,证明Et分子可以部分取代配位的HO分子,重塑锌溶剂化鞘层并破坏水电解质的氢键网络。更重要的是,Et分子倾向于吸附在锌阳极表面,通过隔离水同时抑制水引发的副反应,并通过加速锌扩散和调节锌晶粒的成核尺寸促进均匀致密的沉积。由于这种协同机制,锌阳极在1 mA cm下可实现超过3900 h的循环寿命,平均库仑效率为99.77%。与δ-MnO阴极耦合,全电池在1 A g下1000次循环中具有228.1 mAh g的高比容量和76%的容量保持率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1142/11013137/18b74d24f40d/nanomaterials-14-00644-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验