Department of Biology, University of Padova , Padova 35100, Italy.
Institute of Marine Ecosystems and Fishery Science (IMF), Center for Earth System Research and Sustainability (CEN), University of Hamburg , Hamburg 22767, Germany.
Proc Biol Sci. 2024 May;291(2023):20240089. doi: 10.1098/rspb.2024.0089. Epub 2024 May 29.
Ecological resilience is the capability of an ecosystem to maintain the same structure and function and avoid crossing catastrophic tipping points (i.e. undergoing irreversible regime shifts). While fundamental for management, concrete ways to estimate and interpret resilience in real ecosystems are still lacking. Here, we develop an empirical approach to estimate resilience based on the stochastic model derived from catastrophe theory. The model models tipping points derived from a bifurcation. We extend in order to identify the presence of stable and unstable states in complex natural systems. Our (CUSPRA) has three characteristics: (i) it provides estimates on how likely a system is to cross a tipping point (in the form of a bifurcation) characterized by hysteresis, (ii) it assesses resilience in relation to multiple external drivers and (iii) it produces straightforward results for ecosystem-based management. We validate our approach using simulated data and demonstrate its application using empirical time series of an Atlantic cod population and marine ecosystems in the North Sea and the Mediterranean Sea. We show that is a powerful method to empirically estimate resilience in support of a sustainable management of our constantly adapting ecosystems under global climate change.
生态弹性是指生态系统维持相同结构和功能、避免跨越灾难性临界点(即经历不可逆转的状态转变)的能力。虽然这对管理至关重要,但在实际生态系统中估计和解释弹性的具体方法仍然缺乏。在这里,我们开发了一种基于从突变理论得出的随机模型来估计弹性的经验方法。该模型模拟了由分岔引起的临界点。我们对其进行扩展,以确定复杂自然系统中稳定和不稳定状态的存在。我们的 (CUSPRA)具有三个特点:(i)它提供了系统跨越具有滞后特征的临界点(以分岔的形式)的可能性估计,(ii)它评估了与多个外部驱动因素有关的弹性,(iii)它为基于生态系统的管理提供了直接的结果。我们使用模拟数据验证了我们的方法,并使用北大西洋和地中海海洋生态系统中大西洋鳕鱼种群的经验时间序列演示了其应用。我们表明, 是一种强大的方法,可以经验性地估计弹性,以支持在全球气候变化下对我们不断适应的生态系统进行可持续管理。