Suppr超能文献

使用混合卷积神经网络(CNN)、长短期记忆网络(LSTM)和多层感知器(MLP)集成进行糖尿病诊断。

Diabetes diagnosis using a hybrid CNN LSTM MLP ensemble.

作者信息

Fan Yanmin

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China.

出版信息

Sci Rep. 2025 Jul 23;15(1):26765. doi: 10.1038/s41598-025-12151-y.

Abstract

Diabetes is a chronic condition brought on by either an inability to use insulin effectively or a lack of insulin produced by the body. If left untreated, this illness can be lethal to a person. Diabetes can be treated and a good life can be led with early diagnosis. The conventional method of identifying diabetes utilizing clinical and physical data is laborious, hence an automated method is required. An ensemble deep learning model is presented in this research for the diagnosis of diabetes which includes three steps. Preprocessing is the first step, which includes cleaning, normalizing, and organizing the data so that it can be fed into deep learning models. The second step involves employing two neural networks to retrieve features. Convolutional neural network (CNN) is the first neural network utilized for extracting the spatial characteristics of the data, while Long Short-Term Memory (LSTM) networks-more specifically, an LSTM Stack-are used to comprehend the time-dependent flow of the data based on medical information from patients. The last step is combining the two feature sets that the CNN and LSTM models have acquired to create the input for the MLP (Multi-layer Perceptron) classifier. To diagnose sickness, the MLP model serves as a meta-learner to combine and convert the data from the two feature extraction algorithms into the target variable. According to the implementation results, the suggested approach outperformed the compared approaches in terms of average accuracy and precision, achieving 98.28% and 0.99%, respectively, indicating a very great capacity to identify diabetes.

摘要

糖尿病是一种慢性疾病,其成因要么是无法有效利用胰岛素,要么是身体产生的胰岛素缺乏。如果不加以治疗,这种疾病可能会致人死亡。糖尿病可以通过早期诊断进行治疗并过上良好的生活。利用临床和身体数据识别糖尿病的传统方法很繁琐,因此需要一种自动化方法。本研究提出了一种用于糖尿病诊断的集成深度学习模型,该模型包括三个步骤。预处理是第一步,包括清理、归一化和整理数据,以便将其输入到深度学习模型中。第二步涉及使用两个神经网络来提取特征。第一个神经网络是卷积神经网络(CNN),用于提取数据的空间特征,而长短期记忆(LSTM)网络——更具体地说,是一个LSTM堆栈——则用于根据患者的医疗信息理解数据的时间依赖性流动。最后一步是将CNN和LSTM模型获取的两个特征集合并,为多层感知器(MLP)分类器创建输入。为了诊断疾病,MLP模型充当元学习器,将来自两种特征提取算法的数据合并并转换为目标变量。根据实施结果,所提出的方法在平均准确率和精确率方面优于比较方法,分别达到了98.28%和0.99%,表明具有很强的糖尿病识别能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58e0/12287293/51ec6125caf4/41598_2025_12151_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验