IEEE J Biomed Health Inform. 2024 Sep;28(9):5396-5409. doi: 10.1109/JBHI.2024.3406786. Epub 2024 Sep 5.
Recent methods often introduce attention mechanisms into the skip connections of U-shaped networks to capture features. However, these methods usually overlook spatial information extraction in skip connections and exhibit inefficiency in capturing spatial and channel information. This issue prompts us to reevaluate the design of the skip-connection mechanism and propose a new deep-learning network called the Fusing Spatial and Channel Attention Network, abbreviated as FSCA-Net. FSCA-Net is a novel U-shaped network architecture that utilizes the Parallel Attention Transformer (PAT) to enhance the extraction of spatial and channel features in the skip-connection mechanism, further compensating for downsampling losses. We design the Cross-Attention Bridge Layer (CAB) to mitigate excessive feature and resolution loss when downsampling to the lowest level, ensuring meaningful information fusion during upsampling at the lowest level. Finally, we construct the Dual-Path Channel Attention (DPCA) module to guide channel and spatial information filtering for Transformer features, eliminating ambiguities with decoder features and better concatenating features with semantic inconsistencies between the Transformer and the U-Net decoder. FSCA-Net is designed explicitly for fine-grained segmentation tasks of multiple organs and regions. Our approach achieves over 48% reduction in FLOPs and over 32% reduction in parameters compared to the state-of-the-art method. Moreover, FSCA-Net outperforms existing segmentation methods on seven public datasets, demonstrating exceptional performance.
最近的方法通常在 U 形网络的跳过连接中引入注意力机制来捕获特征。然而,这些方法通常忽略了跳过连接中的空间信息提取,并且在捕获空间和通道信息方面效率低下。这个问题促使我们重新评估跳过连接机制的设计,并提出了一种新的深度学习网络,称为融合空间和通道注意力网络,简称 FSCA-Net。FSCA-Net 是一种新颖的 U 形网络架构,它利用并行注意力转换器 (PAT) 增强跳过连接机制中空间和通道特征的提取,进一步补偿下采样损失。我们设计了交叉注意力桥层 (CAB) 来减轻在下采样到最低级别时的特征和分辨率损失,确保在最低级别进行上采样时进行有意义的信息融合。最后,我们构建了双通道注意力 (DPCA) 模块,用于引导 Transformer 特征的通道和空间信息过滤,消除解码器特征的歧义,并更好地将 Transformer 和 U-Net 解码器之间语义不一致的特征拼接起来。FSCA-Net 是专门为多个器官和区域的精细分割任务设计的。与最先进的方法相比,我们的方法在 FLOPs 上减少了 48%以上,在参数上减少了 32%以上。此外,FSCA-Net 在七个公共数据集上优于现有的分割方法,表现出色。