Suppr超能文献

Flare7K++:混合合成数据集与真实数据集用于夜间耀斑去除及其他应用

Flare7K++: Mixing Synthetic and Real Datasets for Nighttime Flare Removal and Beyond.

作者信息

Dai Yuekun, Li Chongyi, Zhou Shangchen, Feng Ruicheng, Luo Yihang, Loy Chen Change

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Nov;46(11):7041-7055. doi: 10.1109/TPAMI.2024.3406821. Epub 2024 Oct 3.

Abstract

Artificial lights commonly leave strong lens flare artifacts on the images captured at night, degrading both the visual quality and performance of vision algorithms. Existing flare removal approaches mainly focus on removing daytime flares and fail in nighttime cases. Nighttime flare removal is challenging due to the unique luminance and spectrum of artificial lights, as well as the diverse patterns and image degradation of the flares. The scarcity of the nighttime flare removal dataset constrains the research on this crucial task. In this paper, we introduce Flare7K++, the first comprehensive nighttime flare removal dataset, consisting of 962 real-captured flare images (Flare-R) and 7000 synthetic flares (Flare7K). Compared to Flare7K, Flare7K++ is particularly effective in eliminating complicated degradation around the light source, which is intractable by using synthetic flares alone. Besides, the previous flare removal pipeline relies on the manual threshold and blur kernel settings to extract light sources, which may fail when the light sources are tiny or not overexposed. To address this issue, we additionally provide the annotations of light sources in Flare7K++ and propose a new end-to-end pipeline to preserve the light source while removing lens flares. Our dataset and pipeline offer a valuable foundation and benchmark for future investigations into nighttime flare removal studies. Extensive experiments demonstrate that Flare7K++ supplements the diversity of existing flare datasets and pushes the frontier of nighttime flare removal toward real-world scenarios.

摘要

人造光通常会在夜间拍摄的图像上留下强烈的镜头光晕伪影,这会降低视觉质量和视觉算法的性能。现有的光晕去除方法主要集中在去除白天的光晕,在夜间情况下效果不佳。由于人造光独特的亮度和光谱,以及光晕的多样模式和图像退化,夜间光晕去除具有挑战性。夜间光晕去除数据集的稀缺限制了对这一关键任务的研究。在本文中,我们引入了Flare7K++,这是第一个全面的夜间光晕去除数据集,由962张实际拍摄的光晕图像(Flare-R)和7000张合成光晕(Flare7K)组成。与Flare7K相比,Flare7K++在消除光源周围复杂的退化方面特别有效,仅使用合成光晕很难解决这个问题。此外,以前的光晕去除管道依赖于手动阈值和模糊内核设置来提取光源,当光源很小或没有过度曝光时可能会失败。为了解决这个问题,我们在Flare7K++中额外提供了光源注释,并提出了一种新的端到端管道,在去除镜头光晕的同时保留光源。我们的数据集和管道为未来夜间光晕去除研究提供了有价值的基础和基准。大量实验表明,Flare7K++补充了现有光晕数据集的多样性,并将夜间光晕去除的前沿推向了现实世界场景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验