Suppr超能文献

基于稀疏U型前馈网络的耀斑去除模型

Flare Removal Model Based on Sparse-UFormer Networks.

作者信息

Wu Siqi, Liu Fei, Bai Yu, Han Houzeng, Wang Jian, Zhang Ning

机构信息

School of Science, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.

School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.

出版信息

Entropy (Basel). 2024 Jul 25;26(8):627. doi: 10.3390/e26080627.

Abstract

When a camera lens is directly faced with a strong light source, image flare commonly occurs, significantly reducing the clarity and texture of the photo and interfering with image processing tasks that rely on visual sensors, such as image segmentation and feature extraction. A novel flare removal network, the Sparse-UFormer neural network, has been developed. The network integrates two core components onto the UFormer architecture: the mixed-scale feed-forward network (MSFN) and top-k sparse attention (TKSA), creating the sparse-transformer module. The MSFN module captures rich multi-scale information, enabling the more effective addressing of flare interference in images. The TKSA module, designed with a sparsity strategy, focuses on key features within the image, thereby significantly enhancing the precision and efficiency of flare removal. Furthermore, in the design of the loss function, besides the conventional flare, background, and reconstruction losses, a structural similarity index loss has been incorporated to ensure the preservation of image details and structure while removing the flare. Ensuring the minimal loss of image information is a fundamental premise for effective image restoration. The proposed method has been demonstrated to achieve state-of-the-art performance on the Flare7K++ test dataset and in challenging real-world scenarios, proving its effectiveness in removing flare artefacts from images.

摘要

当相机镜头直接面对强光源时,通常会出现图像光晕,这会显著降低照片的清晰度和质感,并干扰依赖视觉传感器的图像处理任务,如图像分割和特征提取。一种新型的光晕去除网络——稀疏UFormer神经网络已经被开发出来。该网络将两个核心组件集成到UFormer架构上:混合尺度前馈网络(MSFN)和top-k稀疏注意力(TKSA),创建了稀疏变压器模块。MSFN模块捕获丰富的多尺度信息,能够更有效地处理图像中的光晕干扰。TKSA模块采用稀疏策略设计,专注于图像中的关键特征,从而显著提高光晕去除的精度和效率。此外,在损失函数的设计中,除了传统的光晕、背景和重建损失外,还引入了结构相似性指数损失,以确保在去除光晕的同时保留图像细节和结构。确保图像信息损失最小是有效图像恢复的基本前提。所提出的方法已被证明在Flare7K++测试数据集和具有挑战性的真实场景中实现了领先的性能,证明了其在去除图像光晕伪影方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af37/11353522/0195deaa0b84/entropy-26-00627-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验