Suppr超能文献

除了 MUN 结构域,Munc13 还控制着突触囊泡的引发和去引发。

Beyond the MUN domain, Munc13 controls priming and depriming of synaptic vesicles.

机构信息

Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.

Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.

出版信息

Cell Rep. 2024 May 28;43(5):114026. doi: 10.1016/j.celrep.2024.114026. Epub 2024 May 21.

Abstract

Synaptic vesicle docking and priming are dynamic processes. At the molecular level, SNAREs (soluble NSF attachment protein receptors), synaptotagmins, and other factors are critical for Ca-triggered vesicle exocytosis, while disassembly factors, including NSF (N-ethylmaleimide-sensitive factor) and α-SNAP (soluble NSF attachment protein), disassemble and recycle SNAREs and antagonize fusion under some conditions. Here, we introduce a hybrid fusion assay that uses synaptic vesicles isolated from mouse brains and synthetic plasma membrane mimics. We included Munc18, Munc13, complexin, NSF, α-SNAP, and an ATP-regeneration system and maintained them continuously-as in the neuron-to investigate how these opposing processes yield fusogenic synaptic vesicles. In this setting, synaptic vesicle association is reversible, and the ATP-regeneration system produces the most synchronous Ca-triggered fusion, suggesting that disassembly factors perform quality control at the early stages of synaptic vesicle association to establish a highly fusogenic state. We uncovered a functional role for Munc13 ancillary to the MUN domain that alleviates an α-SNAP-dependent inhibition of Ca-triggered fusion.

摘要

突触囊泡的对接和引发是动态过程。在分子水平上,SNAREs(可溶性 NSF 附着蛋白受体)、突触融合蛋白和其他因子对于 Ca 触发的囊泡胞吐至关重要,而解体因子,包括 NSF(N-乙基马来酰亚胺敏感因子)和 α-SNAP(可溶性 NSF 附着蛋白),在某些条件下,解体和回收 SNAREs 并拮抗融合。在这里,我们引入了一种杂交融合测定法,该方法使用从小鼠脑中分离的突触囊泡和合成的质膜模拟物。我们包括 Munc18、Munc13、复合蛋白、NSF、α-SNAP 和一个 ATP 再生系统,并连续维持它们,就像神经元一样,以研究这些相反的过程如何产生融合性突触囊泡。在这种情况下,突触囊泡的结合是可逆的,ATP 再生系统产生最同步的 Ca 触发融合,这表明解体因子在突触囊泡结合的早期阶段进行质量控制,以建立高度融合性状态。我们发现 Munc13 的功能作用除了 MUN 结构域外,还缓解了 α-SNAP 对 Ca 触发融合的抑制作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96a1/11286359/aadbac3fe7b1/nihms-2000393-f0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验