Jangid Bhavnesh, Hermes Matthew R, Gagliardi Laura
Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.
Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States.
J Phys Chem Lett. 2024 Jun 6;15(22):5954-5963. doi: 10.1021/acs.jpclett.4c00957. Epub 2024 May 29.
We investigated the use of density matrix embedding theory to facilitate the computation of core ionization energies (IPs) of large molecules at the equation-of-motion coupled-cluster singles doubles with perturbative triples (EOM-CCSD*) level in combination with the core-valence separation (CVS) approximation. The unembedded IP-CVS-EOM-CCSD* method with a triple-ζ basis set produced ionization energies within 1 eV of experiment with a standard deviation of ∼0.2 eV for the core65 data set. The embedded variant contributed very little systematic error relative to the unembedded method, with a mean unsigned error of 0.07 eV and a standard deviation of ∼0.1 eV, in exchange for accelerating the calculations by many orders of magnitude. By employing embedded EOM-CC methods, we computed the core ionization energies of the uracil hexamer, doped fullerene, and chlorophyll molecule, utilizing up to ∼4000 basis functions within 1 eV from experimental values. Such calculations are not currently possible with the unembedded EOM-CC method.
我们研究了利用密度矩阵嵌入理论,结合芯价分离(CVS)近似,在运动方程耦合簇单双激发微扰三激发(EOM-CCSD*)水平下,促进大分子核心电离能(IPs)的计算。采用三重ζ基组的非嵌入IP-CVS-EOM-CCSD*方法,对于core65数据集,计算得到的电离能与实验值的偏差在1 eV以内,标准偏差约为0.2 eV。相对于非嵌入方法,嵌入变体产生的系统误差非常小,平均绝对误差为0.07 eV,标准偏差约为0.1 eV,同时计算速度加快了多个数量级。通过采用嵌入EOM-CC方法,我们计算了尿嘧啶六聚体、掺杂富勒烯和叶绿素分子的核心电离能,使用的基函数多达约4000个,计算值与实验值的偏差在1 eV以内。目前,非嵌入EOM-CC方法无法进行此类计算。