Suppr超能文献

Unfolding of mono-energy neutron spectra using artificial neural network based on LMBP training algorithm.

作者信息

Tajik M

机构信息

School of Physics, Damghan University, P.O. Box 36716-41167, Damghan, Iran.

出版信息

Appl Radiat Isot. 2024 Aug;210:111375. doi: 10.1016/j.apradiso.2024.111375. Epub 2024 May 25.

Abstract

In this work, neutron spectra are unfolded using artificial neural networks (ANNs). The neutron response of the NE213 scintillator detector, characterized by the pulse height distribution, is calculated to obtain the necessary data for unfolding the energy spectrum. This is achieved using both analytical response functions and response functions generated by the MCNPX-PHOTRACK code. In this query, the Levenberg-Marquardt method (LMM), which has a high computational speed in the learning method, is used to train the network. The performance of the ANN for unfolding the neutron energy spectrum of the NE213 scintillation detector was evaluated by comparing its results to the established Gravel method. The ANN method consistently produced spectra with a single peak closely matching the incident energy, while the Gravel method showed additional peaks and distortions. Quantitative analysis revealed a lower relative energy peak difference (indicating higher accuracy) for the ANN method compared to Gravel, particularly when noise was introduced into the data. These results suggest that ANNs offer a more robust and accurate approach for neutron spectrum unfolding.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验