Suppr超能文献

使用径向基函数神经网络进行中子能谱展开

Neutron spectrum unfolding using radial basis function neural networks.

作者信息

Alvar Amin Asgharzadeh, Deevband Mohammad Reza, Ashtiyani Meghdad

机构信息

Department of Biomedical Engineering and Medical Physics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Department of Biomedical Engineering and Medical Physics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

Appl Radiat Isot. 2017 Nov;129:35-41. doi: 10.1016/j.apradiso.2017.07.048. Epub 2017 Jul 26.

Abstract

Neutron energy spectrum unfolding has been the subject of research for several years. The Bayesian theory, Monte Carlo simulation, and iterative methods are some of the methods that have been used for neutron spectrum unfolding. In this study, the radial basis function (RBF), multilayer perceptron, and artificial neural networks (ANNs) were used for the unfolding of neutron spectrum, and a comparison was made between the networks' results. Both neural network architectures were trained and tested using the same data set for neutron spectrum unfolding from the response of LiI detectors with Eu impurity. Advantages of each ANN method in the unfolding of neutron energy spectrum were investigated, and the performance of the networks was compared. The results obtained showed that RBF neural network can be applied as an effective method for unfolding neutron spectrum, especially when the main target is the neutron dosimetry.

摘要

中子能谱展开多年来一直是研究的课题。贝叶斯理论、蒙特卡罗模拟和迭代方法是一些已用于中子谱展开的方法。在本研究中,径向基函数(RBF)、多层感知器和人工神经网络(ANN)被用于中子谱的展开,并对各网络的结果进行了比较。两种神经网络架构都使用来自含铕杂质的碘化锂探测器响应的相同数据集进行训练和测试,以展开中子谱。研究了每种人工神经网络方法在中子能谱展开中的优势,并比较了各网络的性能。所得结果表明,RBF神经网络可作为展开中子谱的一种有效方法,特别是当主要目标是中子剂量学时。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验