Suppr超能文献

基于 SEER 数据的 14 个癌种 2004-2017 年肿瘤特征和患者特征与癌症生存的时变关联分析

Time-varying associations of patient and tumor characteristics with cancer survival: an analysis of SEER data across 14 cancer sites, 2004-2017.

机构信息

Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA.

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

Cancer Causes Control. 2024 Oct;35(10):1393-1405. doi: 10.1007/s10552-024-01888-y. Epub 2024 May 29.

Abstract

PURPOSE

Surveillance, Epidemiology, and End Results (SEER) cancer registries provides information about survival duration and cause of death for cancer patients. Baseline demographic and tumor characteristics such as age, sex, race, year of diagnosis, and tumor stage can inform the expected survival time of patients, but their associations with survival may not be constant over the post-diagnosis period.

METHODS

Using SEER data, we examined if there were time-varying associations of patient and tumor characteristics on survival, and we assessed how these relationships differed across 14 cancer sites. Standard Cox proportional hazards models were extended to allow for time-varying associations and incorporated into a competing-risks framework, separately modeling cancer-specific and other-cause deaths. For each cancer site and for each of the five factors, we estimated the relative hazard ratio and absolute hazard over time in the presence of competing risks.

RESULTS

Our comprehensive consideration of patient and tumor characteristics when estimating time-varying hazards showed that the associations of age, tumor stage at diagnosis, and race/ethnicity with risk of death (cancer-specific and other-cause) change over time for many cancers; characteristics of sex and year of diagnosis exhibit some time-varying patterns as well. Stage at diagnosis had the largest associations with survival.

CONCLUSION

These findings suggest that proportional hazards assumptions are often violated when examining patient characteristics on cancer survival post-diagnosis. We discuss several interesting results where the relative hazards are time-varying and suggest possible interpretations. Based on the time-varying associations of several important covariates on survival after cancer diagnosis using a pan-cancer approach, the likelihood of the proportional hazards assumption being met or corresponding interpretation should be considered in survival analyses, as flawed inference may have implications for cancer care and policy.

摘要

目的

监测、流行病学和最终结果(SEER)癌症登记处提供了有关癌症患者生存时间和死亡原因的信息。基线人口统计学和肿瘤特征,如年龄、性别、种族、诊断年份和肿瘤分期,可以告知患者的预期生存时间,但它们与生存的关联在诊断后可能并不稳定。

方法

我们使用 SEER 数据,检查了患者和肿瘤特征对生存的时间变化关联,评估了这些关系在 14 个癌症部位的差异。标准 Cox 比例风险模型扩展为允许时间变化的关联,并纳入竞争风险框架,分别对癌症特异性和其他原因死亡进行建模。对于每个癌症部位和五个因素中的每一个,我们在存在竞争风险的情况下估计了随时间变化的相对危险比和绝对危险。

结果

我们在估计时变风险时全面考虑了患者和肿瘤特征,结果表明,对于许多癌症,年龄、诊断时肿瘤分期和种族/民族与死亡风险(癌症特异性和其他原因)的关联随时间而变化;性别和诊断年份的特征也表现出一些时变模式。诊断时的分期与生存的关联最大。

结论

这些发现表明,在检查癌症诊断后患者特征对癌症生存的影响时,比例风险假设通常会被违反。我们讨论了一些有趣的结果,其中相对危险是时变的,并提出了可能的解释。基于使用泛癌方法对癌症诊断后生存的几个重要协变量的时变关联,在生存分析中应考虑比例风险假设是否得到满足或相应的解释,因为有缺陷的推论可能对癌症护理和政策产生影响。

相似文献

1
Time-varying associations of patient and tumor characteristics with cancer survival: an analysis of SEER data across 14 cancer sites, 2004-2017.
Cancer Causes Control. 2024 Oct;35(10):1393-1405. doi: 10.1007/s10552-024-01888-y. Epub 2024 May 29.

引用本文的文献

1
Transcripts of splicing factors with time-varying associations with survival outcomes in colorectal cancer.
Am J Cancer Res. 2025 Jul 15;15(7):3128-3141. doi: 10.62347/DWPA1730. eCollection 2025.
2
Revisiting the hazards of hazard ratios through simulations and case studies.
Eur J Epidemiol. 2025 Jul 3. doi: 10.1007/s10654-025-01245-6.

本文引用的文献

1
Abiraterone and Olaparib for Metastatic Castration-Resistant Prostate Cancer.
NEJM Evid. 2022 Sep;1(9):EVIDoa2200043. doi: 10.1056/EVIDoa2200043. Epub 2022 Jun 3.
2
Using information criteria to select smoothing parameters when analyzing survival data with time-varying coefficient hazard models.
Stat Methods Med Res. 2023 Sep;32(9):1664-1679. doi: 10.1177/09622802231181471. Epub 2023 Jul 5.
3
Disparities in cause-specific mortality by race and sex among bladder cancer patients from the SEER database.
Cancer Causes Control. 2023 Jun;34(6):521-531. doi: 10.1007/s10552-023-01679-x. Epub 2023 Mar 8.
4
Cancer statistics, 2023.
CA Cancer J Clin. 2023 Jan;73(1):17-48. doi: 10.3322/caac.21763.
5
Sociodemographic Survival Disparities for Lung Cancer in the United States, 2000-2016.
J Natl Cancer Inst. 2022 Nov 14;114(11):1492-1500. doi: 10.1093/jnci/djac144.
6
Cancer-specific survival after diagnosis in men versus women: A pan-cancer analysis.
MedComm (2020). 2022 Jun 30;3(3):e145. doi: 10.1002/mco2.145. eCollection 2022 Sep.
7
Scalable proximal methods for cause-specific hazard modeling with time-varying coefficients.
Lifetime Data Anal. 2022 Apr;28(2):194-218. doi: 10.1007/s10985-021-09544-2. Epub 2022 Jan 29.
8
American Cancer Society's report on the status of cancer disparities in the United States, 2021.
CA Cancer J Clin. 2022 Mar;72(2):112-143. doi: 10.3322/caac.21703. Epub 2021 Dec 8.
9
Disparities in Cancer Care and the Asian American Population.
Oncologist. 2021 Jun;26(6):453-460. doi: 10.1002/onco.13748. Epub 2021 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验