Suppr超能文献

PfgPDI:用于蛋白质-药物相互作用预测的具有口袋特征的图神经网络

PfgPDI: Pocket feature-enabled graph neural network for protein-drug interaction prediction.

作者信息

Zhang Yiqian, Zhou Changjian

机构信息

School of Electrical and Information, Northeast Agricultural University, Harbin 150030, P. R. China.

Department of Data and Computing, Northeast Agricultural University, Harbin 150030, P. R. China.

出版信息

J Bioinform Comput Biol. 2024 Apr;22(2):2450004. doi: 10.1142/S0219720024500045. Epub 2024 May 27.

Abstract

Biomolecular interaction recognition between ligands and proteins is an essential task, which largely enhances the safety and efficacy in drug discovery and development stage. Studying the interaction between proteins and ligands can improve the understanding of disease pathogenesis and lead to more effective drug targets. Additionally, it can aid in determining drug parameters, ensuring proper absorption, distribution, and metabolism within the body. Due to incomplete feature representation or the model's inadequate adaptation to protein-ligand complexes, the existing methodologies suffer from suboptimal predictive accuracy. To address these pitfalls, in this study, we designed a new deep learning method based on transformer and GCN. We first utilized the transformer network to grasp crucial information of the original protein sequences within the smile sequences and connected them to prevent falling into a local optimum. Furthermore, a series of dilation convolutions are performed to obtain the pocket features and smile features, subsequently subjected to graphical convolution to optimize the connections. The combined representations are fed into the proposed model for classification prediction. Experiments conducted on various protein-ligand binding prediction methods prove the effectiveness of our proposed method. It is expected that the PfgPDI can contribute to drug prediction and accelerate the development of new drugs, while also serving as a valuable partner for drug testing and Research and Development engineers.

摘要

配体与蛋白质之间的生物分子相互作用识别是一项至关重要的任务,这在很大程度上提高了药物发现和开发阶段的安全性和有效性。研究蛋白质与配体之间的相互作用可以增进对疾病发病机制的理解,并产生更有效的药物靶点。此外,它有助于确定药物参数,确保药物在体内的适当吸收、分布和代谢。由于特征表示不完整或模型对蛋白质-配体复合物的适应性不足,现有方法的预测准确性欠佳。为了解决这些问题,在本研究中,我们设计了一种基于Transformer和GCN的新型深度学习方法。我们首先利用Transformer网络来把握微笑序列中原始蛋白质序列的关键信息,并将它们连接起来以防止陷入局部最优。此外,进行一系列扩张卷积以获得口袋特征和微笑特征,随后进行图形卷积以优化连接。将组合表示输入到所提出的模型中进行分类预测。在各种蛋白质-配体结合预测方法上进行的实验证明了我们所提出方法的有效性。预计PfgPDI能够有助于药物预测并加速新药开发,同时也可成为药物测试以及研发工程师的宝贵帮手。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验