Shi Jianwei, Gong Xun, Song Ziang, Xie Wenkai, Yang Yanfeng, Sun Xiangjie, Wei Penghu, Wang Changming, Zhao Guoguang
Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
China International Neuroscience Institute, Beijing, China.
Front Neuroinform. 2024 May 15;18:1384250. doi: 10.3389/fninf.2024.1384250. eCollection 2024.
At the intersection of neural monitoring and decoding, event-related potential (ERP) based on electroencephalography (EEG) has opened a window into intrinsic brain function. The stability of ERP makes it frequently employed in the field of neuroscience. However, project-specific custom code, tracking of user-defined parameters, and the large diversity of commercial tools have limited clinical application.
We introduce an open-source, user-friendly, and reproducible MATLAB toolbox named EPAT that includes a variety of algorithms for EEG data preprocessing. It provides EEGLAB-based template pipelines for advanced multi-processing of EEG, magnetoencephalography, and polysomnogram data. Participants evaluated EEGLAB and EPAT across 14 indicators, with satisfaction ratings analyzed using the Wilcoxon signed-rank test or paired t-test based on distribution normality.
EPAT eases EEG signal browsing and preprocessing, EEG power spectrum analysis, independent component analysis, time-frequency analysis, ERP waveform drawing, and topological analysis of scalp voltage. A user-friendly graphical user interface allows clinicians and researchers with no programming background to use EPAT.
This article describes the architecture, functionalities, and workflow of the toolbox. The release of EPAT will help advance EEG methodology and its application to clinical translational studies.
在神经监测与解码的交叉领域,基于脑电图(EEG)的事件相关电位(ERP)为探究大脑内在功能打开了一扇窗口。ERP的稳定性使其在神经科学领域得到广泛应用。然而,特定项目的自定义代码、用户定义参数的跟踪以及商业工具的多样性限制了其临床应用。
我们介绍了一个名为EPAT的开源、用户友好且可重复使用的MATLAB工具箱,它包含多种用于EEG数据预处理的算法。它为EEG、脑磁图和多导睡眠图数据的高级多处理提供了基于EEGLAB的模板管道。参与者对EEGLAB和EPAT的14项指标进行了评估,并根据分布正态性使用Wilcoxon符号秩检验或配对t检验分析满意度评分。
EPAT简化了EEG信号浏览与预处理、EEG功率谱分析、独立成分分析、时频分析、ERP波形绘制以及头皮电压拓扑分析。用户友好的图形用户界面使没有编程背景的临床医生和研究人员也能使用EPAT。
本文描述了该工具箱的架构、功能和工作流程。EPAT的发布将有助于推进EEG方法及其在临床转化研究中的应用。