Suppr超能文献

EPAT:一个用于脑电图/事件相关电位数据处理与分析的用户友好型MATLAB工具箱。

EPAT: a user-friendly MATLAB toolbox for EEG/ERP data processing and analysis.

作者信息

Shi Jianwei, Gong Xun, Song Ziang, Xie Wenkai, Yang Yanfeng, Sun Xiangjie, Wei Penghu, Wang Changming, Zhao Guoguang

机构信息

Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.

China International Neuroscience Institute, Beijing, China.

出版信息

Front Neuroinform. 2024 May 15;18:1384250. doi: 10.3389/fninf.2024.1384250. eCollection 2024.

Abstract

BACKGROUND

At the intersection of neural monitoring and decoding, event-related potential (ERP) based on electroencephalography (EEG) has opened a window into intrinsic brain function. The stability of ERP makes it frequently employed in the field of neuroscience. However, project-specific custom code, tracking of user-defined parameters, and the large diversity of commercial tools have limited clinical application.

METHODS

We introduce an open-source, user-friendly, and reproducible MATLAB toolbox named EPAT that includes a variety of algorithms for EEG data preprocessing. It provides EEGLAB-based template pipelines for advanced multi-processing of EEG, magnetoencephalography, and polysomnogram data. Participants evaluated EEGLAB and EPAT across 14 indicators, with satisfaction ratings analyzed using the Wilcoxon signed-rank test or paired t-test based on distribution normality.

RESULTS

EPAT eases EEG signal browsing and preprocessing, EEG power spectrum analysis, independent component analysis, time-frequency analysis, ERP waveform drawing, and topological analysis of scalp voltage. A user-friendly graphical user interface allows clinicians and researchers with no programming background to use EPAT.

CONCLUSION

This article describes the architecture, functionalities, and workflow of the toolbox. The release of EPAT will help advance EEG methodology and its application to clinical translational studies.

摘要

背景

在神经监测与解码的交叉领域,基于脑电图(EEG)的事件相关电位(ERP)为探究大脑内在功能打开了一扇窗口。ERP的稳定性使其在神经科学领域得到广泛应用。然而,特定项目的自定义代码、用户定义参数的跟踪以及商业工具的多样性限制了其临床应用。

方法

我们介绍了一个名为EPAT的开源、用户友好且可重复使用的MATLAB工具箱,它包含多种用于EEG数据预处理的算法。它为EEG、脑磁图和多导睡眠图数据的高级多处理提供了基于EEGLAB的模板管道。参与者对EEGLAB和EPAT的14项指标进行了评估,并根据分布正态性使用Wilcoxon符号秩检验或配对t检验分析满意度评分。

结果

EPAT简化了EEG信号浏览与预处理、EEG功率谱分析、独立成分分析、时频分析、ERP波形绘制以及头皮电压拓扑分析。用户友好的图形用户界面使没有编程背景的临床医生和研究人员也能使用EPAT。

结论

本文描述了该工具箱的架构、功能和工作流程。EPAT的发布将有助于推进EEG方法及其在临床转化研究中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b05a/11133744/7244d8df0127/fninf-18-1384250-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验