Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi.
Clinical Research Unit, All India Institute of Medical Sciences, New Delhi.
J Glob Health. 2024 May 31;14:05013. doi: 10.7189/jogh.14.05013.
Different statistical approaches for estimating excess deaths due to coronavirus disease 2019 (COVID-19) pandemic have led to varying estimates. In this study, we developed and validated a covariate-based model (CBM) with imputation for prediction of district-level excess deaths in India.
We used data extracted from deaths registered under the Civil Registration System for 2015-19 for 684 of 713 districts in India to estimate expected deaths for 2020 through a negative binomial regression model (NBRM) and to calculate excess observed deaths. Specifically, we used 15 covariates across four domains (state, health system, population, COVID-19) in a zero inflated NBRM to identify covariates significantly (P < 0.05) associated with excess deaths estimate in 460 districts. We then validated this CBM in 140 districts by comparing predicted and estimated excess. For 84 districts with missing covariates, we validated the imputation with CBM by comparing estimated with predicted excess deaths. We imputed covariate data to predict excess deaths for 29 districts which did not have data on deaths.
The share of elderly and urban population, the under-five mortality rate, prevalence of diabetes, and bed availability were significantly associated with estimated excess deaths and were used for CBM. The mean of the CBM-predicted excess deaths per district (x̄ = 989, standard deviation (SD) = 1588) was not significantly different from the estimated one (x̄ = 1448, SD = 3062) (P = 0.25). The estimated excess deaths (n = 67 540; 95% confidence interval (CI) = 35 431, 99 648) were similar to the predicted excess death (n = 64 570; 95% CI = 54 140, 75 000) by CBM with imputation. The total national estimate of excess deaths for all 713 districts was 794 989 (95% CI = 664 895, 925 082).
A CBM with imputation can be used to predict excess deaths in an appropriate context.
由于对 2019 年冠状病毒病(COVID-19)大流行导致的超额死亡人数的统计方法不同,导致了各种估计值。在这项研究中,我们开发并验证了一种基于协变量的模型(CBM),该模型具有插补功能,用于预测印度各地区的超额死亡人数。
我们使用从印度 713 个地区中的 684 个地区的公民登记系统中提取的死亡数据,通过负二项回归模型(NBRM)估计 2020 年的预期死亡人数,并计算实际观察到的超额死亡人数。具体来说,我们使用了四个领域(州、卫生系统、人口、COVID-19)的 15 个协变量,在一个零膨胀的 NBRM 中识别与 460 个地区的超额死亡估计值显著相关的协变量(P < 0.05)。然后,我们在 140 个地区验证了这种 CBM,通过比较预测的和估计的超额死亡来进行验证。对于 84 个缺失协变量的地区,我们通过比较估计的和预测的超额死亡来验证 CBM 的插补。我们对 29 个没有死亡数据的地区进行了协变量数据的插补,以预测超额死亡人数。
老年人口和城市人口比例、五岁以下儿童死亡率、糖尿病患病率和床位可用性与估计的超额死亡人数显著相关,并被用于 CBM。每个地区的 CBM 预测超额死亡人数的平均值(x̄=989,标准差(SD)=1588)与估计的平均值(x̄=1448,SD=3062)没有显著差异(P=0.25)。通过插补进行的 CBM 预测的超额死亡人数(n=67540;95%置信区间(CI)=35431,99648)与估计的超额死亡人数(n=64570;95%CI=54140,75000)相似。所有 713 个地区的全国超额死亡人数总估计数为 794989(95%CI=664895,925082)。
在适当的情况下,基于协变量的模型(CBM)可以用于预测超额死亡人数。